
JNOS40

CONFIGURATION MANUAL

(NOS for the Kantronics Data Engine(tm))

(Document ID:  40_CFG02)

JNOS40 Program by

Johan K. Reinalda, WG7J

Documentation (C)1994
by

Johan K. Reinalda, WG7J
and

Douglas E. Thompson, WG0B

Release 1.00
February 28, 1994

(based in part on the NOS Reference Manual,
by Phil Karn, KA9Q

and
Gerard van der Grinten, PA0GRI)

DISCLAIMER
-----------------

The authors make no guarantees, explicit or implied, about the functionality or 
any other aspect of the programs described herein.



COPYRIGHTS AND TRADEMARKS

Data Engine, D4-10, DVR2-2, DE1200 and DE9600 are Trademarks or 
Registered Trademarks of Kantronics Co., Inc.

Unix is a Registered Trademark of AT&T.

NET.EXE program (C) Copyright 1992 by Phil R. Karn, KA9Q.

JNOS40 is based on work (C) Copyright 1991 by Phil R. Karn, KA9Q, and other 
contributors.

JNOS40 (C) Copyright 1993 by Johan. K. Reinalda, WG7J

NET/ROM software (C) Copyright 1987 Software 2000, Inc.

NET/ROM is a trademark of Software 2000, Inc.

JNOS40 CONFIGURATION MANUAL (C) Copyright 1993,1994 by Johan K. 
Reinalda, WG7J, and Douglas E. Thompson, WG0B.

JNOS40 Configuration Manual February 28, 1994 Page 2



TABLE OF CONTENTS

COPYRIGHTS AND TRADEMARKS 2
TABLE OF CONTENTS 3
INTRODUCTION 5
TERMINOLOGY 6
JNOS40 Overview 8
Features and Capabilities 9
LIMITATIONS 11
CONFIGURING JNOS40 14
SHORT VERSION 14
LONG VERSION 14
Attaching Interfaces 16
Attaching the serial port 16
Attaching a single-port TNC in KISS mode 17
Attaching a multi-port TNC in KISS mode 17
Attaching multiple single-port TNCs in wg7j-kiss mode 18
Attaching multiple single-port TNCs in g8bpq-polled-kiss mode 18
Attaching a SLIP connection 19
Attaching one or more TNCs with Net/Rom or TheNet software 19
Attaching the internal radio ports 20
MTU and Interrupt Buffer Size 21
ATTACH LOGICAL INTERFACE COMMANDS 21
NETROM 22
AXIP 22
PREPARING AUTOEXEC.NOS 24
Attaching Interfaces 25
Configuring AX.25 25
Configuring Net/Rom 26
Configuring TCP/IP 27
Configuring the Conference Bridge 28
Configuring the Domain Name System 30
Configuring RSPF 33
PREPARING THE EPROMS 34
The CHECK.EXE Program 34
The CFG.EXE Program 35
WG7J and G8BPQ KISS Mode Operation 37
WG7JKISS 39
PHysical Connections 41
Hardware Handshaking on the Serial Port 41
Connecting Single and Multiport TNCs 42
Connecting Multiple TNCs in NRS mode 42
Connecting Multiple TNCs with G8BPQ KISS ROMs 45
Connecting Multiple TNCs with WG7JKISS ROMs 46
Using the Console 46
Node Behavior 48
Making Connections 50
JNOS40 Configuration Manual February 28, 1994 Page 3



Disabling the "stay here" feature 50
Using the E)scape command and setting the escape character 50
The Conference Server 53
The LEDs and the Watchdog Timer 55
Bibliography 56

JNOS40 Configuration Manual February 28, 1994 Page 4



TABLE OF CONTENTS (cont)

APPENDIX A  Sample Autoexec.nos for the Data Engine (tm) 60
APPENDIX B  Of PACLEN, MTU, MSS, and More 70
APPENDIX C  Designing Attach Commands 75
APPENDIX D  Making Your TNC talk in KISS Mode 77
APPENDIX E  BBS Sites and Internet Conferences 78

JNOS40 Configuration Manual February 28, 1994 Page 5



INTRODUCTION

This manual is applicable to JNOS40 (JNOS for the Data Engine) Version 1.00
JNOS40 is an adaptation of Phil Karn's, KA9Q, NOS.EXE program.  It runs 
standalone on a Kantronics Data Engine and is intended for use as a stand-alone, 
hilltop packet switch.  JNOS40 provides TCP/IP, NET/ROM and AX.25 switch and 
routing functions as well as Converse and Domain Name Servers.  JNOS40 can act
simultaneously as a server and a packet switch for all three sets of protocols 
because it has an internal multitasking operating system.  That is, while a remote 
user accesses the switch (i.e. 'the node'), the system can also switch IP, NET/ROM
and AX.25 packets and frames between other users and remote systems.
The user interface for network operation of JNOS40 is very similar to the well-
known G8BPQ, TheNet and NetRom-based nodes.  The user interface in the 
JNOS.EXE program is  commonly called the 'mailbox'.  Since JNOS40 doesn't 
provide any mail services, the terms 'node shell' or simply 'node' seem more 
appropriate.  All three terms are used interchangeably throughout this document.
This document is not a beginner's guide to tcp/ip.  Experience with PC, Atari, 
Macintosh or Unix-based versions of the KA9Q NOS program, or with other tcp/ip 
systems will help much in getting things setup and configured correctly.  We 
attempted to make this manual easy to follow by taking things in small steps and 
providing lots of examples.  
See the ADDENDUM file for the 'Intronos' document written by John Ackerman, 
AG9V, which offers a good tutorial on NOS and tcp/ip. It is included with the 
author's permission.  All credit goes to John for his work!  Also included is the 
Frequently Asked Questions list that the tcp-development group maintains.  You 
can contact the group on Internet via the tcp-group@ucsd.edu mail-list.  These 
documents have a lot of useful information about Amateur Radio tcp/ip.

JNOS40 Configuration Manual February 28, 1994 Page 6



TERMINOLOGY

These are some of the abbreviations and terms used throughout this manual.
HOSTNAME is the tcp/ip name of a computer or packet systems

INTERNET is a world wide high speed computer network. It has thousand of 
computers at schools, companies and amateur packet radio systems 
connected to it.

MTU, or Maximum Transmission Unit, is the maximum data size in one packet. 
Most often the data referred to with the mtu is the transported data, i.e. 
data in a network connection. With tcp/ip, the size of the tcp/ip frame 
inside the ax.25 packet is the mtu; with net/rom, the size of the data 
inside the netrom packet is the mtu.

NRS, or Net/Rom Serial protocol, is what TNCs with Net/Rom or TheNet eproms 
talk on the serial port.

NODE, NODESHELL, MAILBOX are terms used interchangeably for the user 
interface when connected to the node.

PACLEN, or packet length, is most often used to refer to data size in a link packet. 
The data in an ax.25 packet can be up to paclen bytes.

PORT or INTERFACE means the physical connection to a radio or other system (i.e.
radio port or serial interface). The two terms are used interchangeably

RFCs, or Requests For Comment, are standard papers used by the Internet 
Engineering Task Force (IETF) to discuss and propose new networking 
protocols and other related topics.

RSPF,  or Radio Shortest Path First, is a tcp/ip routing protocol especially targetted
at radio environments.

RTT, or Round Trip Time, indicates the time needed for data to be sent and 
acknowledged.

SLIP, or Serial Line IP, is a way to send IP frames over a serial port without using 
ax.25 or ethernet to carry the data.  You can use SLIP to connect to PC's 
or Unix systems also running SLIP and exchange tcp/ip data.

JNOS40 Configuration Manual February 28, 1994 Page 7



*********************************************************************
* If you use JNOS40, I would appreciate if you drop me a note with  *
* your thoughts and suggestions.  You may use Internet, packet, or  *
* postal service.    Thanks in advance,   Johan                     *
*********************************************************************

Questions, remarks and suggestions about JNOS and JNOS40 are welcome and 
should be sent to:
Johan Reinalda, WG7J/PA3DIS
420 NW 9th
Corvallis, OR 97330
U.S.A.

email: johan@ece.orst.edu
(or the sloooower WG7J@WG7J.OR.USA.NA via packet)

or for the documentation only:

Doug Thompson, WG0B
PO Box 21108
Wichita, KS 67208-7108

email:     wg0b@delphi.com
or packet  wg0b@k0hyd.#scks.ks.usa.na

Corrections (and comments) to the documentation must include the following 
information:
1) Document ID  (See the Title Page)

2) Page Number

3) Text as it exists 
This does not have to be the complete text.  But it must be enough to ensure 
unambiguous identification of the area under discussion.

4) Text as it is proposed to be or an explanation of the problem which I will 
convert into appropriate text.

DO NOT send a copy of the whole document with revisions scattered throughout.  
I have neither the time nor the inclination to wade through that much text. - wg0b
Send the corrections to WG0B at one of the addresses on the preceding page.  If 
it comes to the PO Box, please send it on floppy disk, IBM format, 1.44 MB or less.
The documents have been prepared using Microsoft Word Version 5.0.  Submittals
using MS Word 4.0 or 5.0 format, plain ASCII text, or Rich Text Format (RTF) 
JNOS40 Configuration Manual February 28, 1994 Page 8



(supported by WordPerfect) are all easily handled

JNOS40 Configuration Manual February 28, 1994 Page 9



JNOS40 OVERVIEW

JNOS40 is distributed in a zipped archive, containing:

nos40lo.bin - low eprom image
nos40hi.bin - high eprom image
40_cfg02.txt - this document in plain ASCII text format
jn_cmd02.txt - the JNOS/JNOS40 Commands Manual in ASCII

  text
addendum.txt - FAQ, "IntroNOS", and other useful info
cfg.exe - the eprom configuration program
check.exe - the autoexec.nos checking program
autoexec.nos - a sample configuration file
domain.txt - a sample domain configuration file
history - revision and history file

kiss.zip - various kiss eproms for tnc2 and compatibles

Additionally, the document files are separately available in a zipped archive 
containing:

40_cfg02.doc - this document in MS-Word 5.0 format
jn_cmd02.doc - JNOS/JNOS40 Commands Manual in MS Word

  format

Hardware Requirements

To run JNOS40 you will need the following:

A Kantronics Data Engine (This is a surpise?)
 Optional - One or two internal modems for the Data Engine
 (You could run all comm through TNCs attached to the serial
  port, but that's sure wasteful.)

2 128kx8 (1 mbit) EPROMs (27c010, 27c1001, 27c101...)
150 nsec speed or faster is recommended.

(Optional) 1 or 2 128Kx8 Static RAM ICs (See text below)

You will also require access to the following equipment to prepare the eproms for 
the data engine:

Eprom programmer
PC-compatible computer to run the CFG.EXE and CHECK.EXE programs.

JNOS40 Configuration Manual February 28, 1994 Page 10



FEATURES AND CAPABILITIES

(See the file 'HISTORY' for a complete account of the evolution of different 
versions.)

JNOS40 Version 1.00

NETROM Node with "Stay Here" capability

IP Router

IP Domain Name Server with domain.txt file in ROM
Additional entries cached in RAM

Accepts multiple TELNET, AX.25, and NETROM connections in any combination

Converse (Conference) Server
- Supports linked conferences

IP Finger server

RIP (Routing Internet Protocol) and RSPF (Radio Shortest Path First) path 
determination modes are supported.

ARP (Address Resolution Protocol) mapping supported

Serial Port supports the following protocols:
RS-232 (console mode)
KISS
G8BPQ-style Polled KISS
WG7J Bus Contention KISS
NETROM Serial (NRS) protocol
SLIP

Four different menu response modes
- No prompt or Netrom ID
- No Menu (Netrom node ID only  (NRID))
- Single Line Menu (NRID plus first letter of available commands)
- Full Menu (NRID plus full word list of available commands.)

Comprehensive on-line help

Automatic user-to-sysop TTYLINK using Sysop command when enabled

ALL configuration commands are available to remote sysop when properly 
authenticated via any connection type (tcp/ip, netrom, or ax.25)

JNOS40 Configuration Manual February 28, 1994 Page 11



Hidden 'memory' and 'links' commands allow checking these performance 
parameters from the nodeshell instead of requiring sysop mode to be entered.

Capability to ADD configuration commands which will be stored in bbram and 
executed in the event of power loss or sysop commanded warm restart.  These 
commands may either supplement or modify commands contained in eprom.

All configuration parameters may be set from autoexec.nos instead of having to 
use the "advanced setup" function in CFG.EXE.  This makes setup for JNOS40 
functionally the same as for JNOS.

CHECK.EXE allows the autoexec.nos file to be checked and 'what-if' games to be 
played before burning eproms.

CFG.EXE automatically calls CHECK.EXE for syntax and parameter checking while 
preparing data for the eproms.  Both of these programs run on PC compatible 
(x86) computers only.

JNOS40 Configuration Manual February 28, 1994 Page 12



LIMITATIONS

NOTE: Many operators have reported problems getting the Data Engine to start 
up when new eproms are installed.  This problem can be corrected by removing 
battery jumper J5 while initially booting with the new eproms.  Re-install the 
jumper once the Data Engine is operating.

Even though the Data Engine may start up with new eproms without having 
removed J5, data saved in battery-backed ram (bbram) may produce surprise(!) 
configurations.  Removing jumper J5 allows the saved data to be dumped so that 
the new start will use only the configuration data in eprom.

NOTE:  Both CHECK.EXE and CFG.EXE are version specific.  You must use the 
copies of these programs which are distributed with a particular version of 
JNOS40.  If you attempt to use incorrect versions, an error message will be 
displayed and program execution will stop.

a)  AUX switch setting for running the program

To run the JNOS40 node program the AUX switch on the front panel of the Data 
Engine needs to be OUT (unlike the commonly used G8BPQ software where the 
AUX switch needs to be IN.)  Depress the AUX switch to use the serial port for the 
console.
b)  Data Engine Hardware Ports and NOS servers

This release supports the two internal radio ports, the serial port, and most of the 
servers available in the NOS.EXE program.
RADIO PORT A has been tested with a type A modem (e.g. DE1200), with both 
simplex and duplex.  A type B modem (e.g. DE9k6/19k2) has been tested with full
duplex audio-loop back, as well as simplex with a pair of D4-10s.  A simple Type D
loop back modem has also been tested, up to 57600Bd.  Port A is always DMA 
driven for optimal performance.  Code for type C modems is present BUT HAS 
NOT BEEN TESTED due to the lack of such hardware.
RADIO PORT B has been tested with a type A and B modems in half-duplex only.  
Type C and D drivers are present, but again NOT TESTED. Port B currently only 
supports simplex.
The SERIAL PORT can operate either as a console port or a serial network 
interface.  The serial port data rate should be limited to 19200 baud or less.  A 
problem of interrupt latency is being worked on in order to provide higher serial 
port data rates.  
The network interface mode currently supports SLIP, NRS, and KISS (AX25) 
modes.  Multi-port KISS is supported, i.e., one serial line to a TNC with 2 radio 
ports.  Polled KISS support (as in G8BPQ's Multidrop KISS) is now available.  'Bus 
contention kiss', a new scheme to attach more than one tnc in kiss mode to the 
JNOS40 Configuration Manual February 28, 1994 Page 13



serial port is also supported.  TNC2 compatible eprom images and other info are 
in the file kiss.zip. The serial port can use hardware handshaking via the CTS and
DTR lines for any connection scheme.  See the section "Hardware Handshaking on
the Serial Port" for more.
Servers supported are:

telnet  (started automatically)
netrom " "
ax25 " "
finger" "
remote " "

Other services available are:

convers Start from autoexec.nos, console, or remote
rip      Start from autoexec.nos, console, or remote
rspf2.0 (untested!!)
trace (only when in console mode)

c)  Data Engine Memory

A standard Data Engine contains two 32K RAM chips.  This minimum configuration
will work and results in around 25k RAM available.  However, it is STRONGLY 
advised you upgrade to more memory by replacing one or both of the RAM chips 
with 128kb Static RAM chips (120ns or faster).  You may install any combination of
32K and 128K Static RAM chips in the Data Engine for use with JNOS40.  There are
no restrictions on what size IC is installed in which socket, BUT BOTH SOCKETS 
need to have an IC installed.
JNOS40 will automatically sense which memory configuration is present at startup
and does not require any entries in autoexec.nos.
d)  Memory addresses:

Because all allocated memory in NOS has an offset of 8 (i.e. it shows like 
23ef0008), all displays have been modified to simply show the segment of the 
memory location, i.e., the above location  will show as 23ef.  Kicking and resetting
also only need the segment descriptor, e.g. 'tcp reset 23ef' .

e)  Battery Backup.

Many configuration parameters are kept in battery-backed ram (BBRAM) and will 
be maintained across power outages or warm restarts UNLESS they are  re-set in 
the eprom startup configuration.  These parameters as well as configuration data 
entered with the 'add' command are stored in BBRAM and are protected against 
corruption using a 16-bit CRC (variables and config-data have separate CRCs...)  If
the data becomes corrupt, the next restart will load original values from ROM or 
blank out the added config-data area, or both.  Data can be changed using 
JNOS40 Configuration Manual February 28, 1994 Page 14



console mode or as remote sysop, and will be maintained across power outages 
as long as the battery is okay and no corruption occurs.  The bbram variables are 
marked with (B) in the JNOS/JNOS40 Commands Manual.

f)  Passwords:

Both the node sysop password and remote server password default to 
'0123456789' unless changed in the configuration file.  Password length is limited 
to 30 characters.

g)  Console Mode Connects

JNOS40 does not support connections initiated from the console while in Console 
Mode.

JNOS40 Configuration Manual February 28, 1994 Page 15



CONFIGURING JNOS40
SHORT VERSION

The following steps are the absolute minimum to prepare a Data Engine for use 
with JNOS40:
1) Edit the autoexec.nos file
2) Run CFG.EXE to prepare the eprom images
3) Burn the eprom images into two 1-mbit eproms
4) Install the eproms in the data engine.
5) (Optional) Install one or two 128kx8 bit static RAM chips
6) (Optional) Install the internal modems
7) Apply power

Other steps which may be included plus detailed instruction for each step are in 
the sections which follow.

LONG VERSION

The following sections will guide you through the steps needed to produce a 
minimal configuration that will allow you to get going. Then you can start 
experimenting with some of the more 'exotic' things related to NOS and tcp/ip.
All commands shown in the following sections, and all other commands available, 
are described in the "JNOS and JNOS40 COMMANDS Manual".   Please refer to that
document for detail about the commands used.
All examples shown are just that: examples.  They are by no means the only way 
to set the parameters.  They merely serve as a place to get you started.  Settings 
will often depend on the systems around you, and on the parameters preferred by
the packet network operators in your area.  Please contact your local packet 
organization for the guidelines and parameter settings preferred in your area 
packet network !

Interface Buffers

There are two different types of buffers associated with attaching interfaces.
The first type is the ring buffer or fifo (first in, first out) that is used when 
attaching the serial port.  It is used for receiving only. This buffer is allocated just 
once, and is used throughout the life of the interface.  The asynchronous (or serial
port) receiver interrupt code puts characters in this buffer in a circular fashion. 
When the end of the buffer is reached, the next character is stored at the 
beginning and continues through the buffer again.
The receiver process for the serial interface reads the characters from this fifo-
buffer into memory buffers, or mbufs, that are used internally to handle and pass 
around data.  Setting the size of the fifo buffer is an empirical process.  A good 
place to start is to set it to twice the size of the packet length used over the serial
port.  Once you have the interface running, you can monitor the usage of the fifo 
buffer with the 'asy' command.  This will show you the 'buf hi' value which is the 
same as 'sw hi' for PC based NOS.  'buf hi' is the highest value of the number of 
JNOS40 Configuration Manual February 28, 1994 Page 16



characters that were waiting in the fifo buffer to be read by the receiver process.  
If 'buf hi' is close to the fifo buffer size, or if the 'asy' command shows buffer 
overflows ('buf over' for JNOS40 code), you should increase the buffer size.  If 
however the number is significantly smaller, you could decrease the buffer size.
The second type of interface buffer is also a receiver buffer.  However, this type of
buffer is allocated, then released as needed. This buffer almost always is 
allocated during interrupt service routines, i.e., when the interrupts are off!  In 
order to keep the service routine short, the buffer is allocated from a special 
'interrupt buffer queue' because a regular memory allocation would take far too 
long.
The two internal modem drivers use this second type of buffer.  Since one 
interrupt buffer pool services all the drivers that need buffers during interrupt, the
size and number of these buffers are quite critical to a system's 'well-being'.  A 
buffer acquired from the interrupt buffer pool needs to be large enough to handle 
the largest packet received from any of the internal modem interfaces.
A good rule to estimate the size of the interrupt buffers needed is as follows:
Set 'memory ibufsize' to the (largest + 'extra') of:

1 - the largest ax.25 paclen parameter of the internal modem interfaces, OR

2 - the largest ip mtu parameter of the internal modem interfaces.
      
      PLUS 'extra' which accounts for the longest possible ax.25 header (source, 
destination, control and digipeaters).  Use 80 bytes for' extra' as a general rule.
The MTU is important because on ax.25 interfaces where the MTU is larger than 
the paclen, there is a possibility of receiving larger ip frames when IP traffic is 
carried in Datagram mode.  This possibility does not exist if IP traffic is carried in 
Virtual Connect (VC) mode, since the data will be split in several paclen-sized 
ax.25 packets.  (This is AX.25 V2.1 fragmentation at work for you!)  When using 
VC mode you can ignore the MTU values when finding the ibuf size.
The above discussion assumes that paclen and mtu values are coordinated 
between all users in your area packet network. If this is not the case, someone 
else might send packets larger then what your system can handle. Such packets 
will cause receive buffer overflow and will be dumped!
If you have an ax.25 interface with paclen of 256, mtu of 256, and another with 
paclen of 256 and mtu of 512, you should set the 'memory ibufsize' to at least 
512 + 80 ! 
JNOS40 ibufs default to 600 bytes, and should suffice for paclen's or mtu's up to 
512.  NOS.EXE has a default ibufsize of 2k (ie 2048 bytes), wich suffices for the 
standard Ethernet MTU of 1500 bytes. 
Determining the number of buffers needed is another empirical process.  Start 
with, say, ten buffers (ie 'memory nibufs 10'). If you get a lot of memory ibuffails 
in the 'mem stat' display, you should increase the number of buffers.  
NOTE: if you are not using one or more of the internal modems or any drivers that
require interrupt buffers, there is no need to keep them around.  In that case, 
simply set 'mem nibuf 0'.

JNOS40 Configuration Manual February 28, 1994 Page 17



Attaching Interfaces

There are two types of attach commands.  The first type attaches physical 
interfaces or ports.  These commands identify the serial port and the two internal 
radio ports to the system.  The JNOS40 hardware attach commands are 'attach 1',
'attach 2', and 'attach 3'.  The second type attaches 'pseudo' interfaces, that is, 
interfaces which do not directly relate to physical hardware ports.  These 
commands are 'attach axip', 'attach kiss', and 'attach netrom'

Data Engine Ports

In the JNOS40 attach command, the ports in the Data Engine are named 
(numbered) 1, 2, and 3.
1 is the serial port,
2 is internal port A, and
3 is internal port B.

You may still give a mnemonic name to each port; the numbers are equivalent to 
the port addresses in the JNOS attach commands so that the program knows 
which port you want to use.

Attaching the serial port

To attach the serial port, the syntax is:

'attach 1 <mode> <name> <buffer> <mtu> <speed> [c]'

where:

mode - is one of 'ax25','slip' or 'nrs', or 'pkiss'
name - is the interface name, e.g., 'port1'or '2m'
buffer- is the receive buffer size 
 (see INTERFACE BUFFERS for more)
mtu - is the maximum transmission unit (which for an
 AX.25 V2 interface should be 256.)
speed - any common speed from 300 - 9600 Bd.
 (19200 and higher should not be used. See text)
[c] - enables RTS/CTS handshaking except in g8bpq-polled-
 kiss mode (see HARDWARE HANDSHAKING...)

There are four different modes currently supported and some of the modes 
support multiple configurations.  As a result, you have several options when using
the serial port.  You can configure JNOS40 to attach one of the following:

- a single-port tnc in kiss mode

JNOS40 Configuration Manual February 28, 1994 Page 18



- a multi-port tnc in kiss mode

- multiple single-port TNCs in wg7j-kiss mode

- multiple single-port TNCs in g8bpq-polled-kiss mode

- one or more TNCs with Net/Rom or TheNet software using NRS protocol

- a slip connection to a tcp/ip host

All configurations for the serial port are listed below.

Attaching a single-port TNC in KISS mode.

To attach a TNC to the serial port use the  'ax25'  mode.  This is also 
called KISS and means you have a TNC in kiss mode or with a kiss eprom 
in it connected to the serial port.  To attach a tnc to the serial port in KISS
mode use:

attach 1 <mode> <name> <buffer> <mtu> <speed> <c>

Example:
attach 1 ax25 port1 512 256 9600

See the section on 'Physical Connections / Single and Multiport TNCs' 
for information on how to connect the tnc to the Data Engine.

Attaching a multi-port TNC in KISS mode.

Attaching the second port of a single tnc with multiple ports, i.e., a multi-port KISS
tnc, like a KPC-4, is done with the command:

      attach kiss <asy_iface_label> <port#> <label> [mtu]

You first need to have attached the Data Engine serial port in ax25 mode.  The 
attached serial port will always default to the first port (tnc port 0) in the 
multiport tnc.  Next you can attach the second port (tnc port 1)in the dual port tnc
with the 'attach kiss' command.

To attach both ports of a dualport tnc in kiss mode at 9600 baud:

attach 1 ax25 port1 512 256 9600
attach kiss port1 1 kiss2
JNOS40 Configuration Manual February 28, 1994 Page 19



In this example, the first port is addressed with the name 'port1', and the second 
port with the name 'kiss2'

Attaching multiple single-port TNCs in wg7j-kiss mode

WG7J's Kiss eproms allow multiple separate TNCs to be connected on one serial 
port.  These TNCs signal each other when they need to send a frame to the host 
(the Data Engine) by raising the CTS line active.  If the DTR line is active when a 
serial transmission needs to occur, the TNC  will wait until the DTR line becomes 
inactive.  This approach can be more efficient than polled TNCs, where time is 
spent polling TNCs that might not have any data.

To use the WG7JKISS eprom to have multiple TNCs in kiss mode on the serial port,
configure the address for each eprom according to information in the 
KISSROMS.TXT file.  Also, connect the TNCs together as described in the 
'Physical Connections / Multiple TNCs with WG7JKISS roms' section of this 
document.  Then 'attach' the first TNC on the serial port as an ax25 type, and for 
each additional TNC attach a kiss interface. 

EXAMPLE:  If you have 3  TNCs, with addresses 0 (mandatory !), 10 , and 14, 
running at 9600 bd, with interface names 'port0', 'lan10',and ' users14', the 
attach statements would be:

attach 1 ax25 port0 512 256 9600
attach kiss port0 10 lan10
attach kiss port0 14 users14

Attaching multiple single-port TNCs in g8bpq-polled-kiss mode

This method allows multiple TNCs to be hooked up to the serial port.  Each tnc will
be polled for data at a regular interval. The 'c' option for handshaking is ignored 
in this mode.

To attach multiple TNCs on the serial port using the G8BPQ polled kiss scheme, 
configure each tnc according to the G8BPQ documentation.  To connect the TNCs 
to the Data Engine, refer to G8BPQ's KISSROMS.DOC documentation, or to the 
'Physical Connections / Attaching TNCs with G8BPQ Polled Kiss roms' 
section in this document.  Then attach the first tnc on the serial port as a PKISS 
type, and for each additional tnc attach a kiss interface.  

EXAMPLE: If you have 3 TNCs, with addresses 0 (mandatory!), 10 , and 14, 
running at 9600 bd, with interface names port0, lan10, users14, the attach 
JNOS40 Configuration Manual February 28, 1994 Page 20



statements would be

attach 1 pkiss port0 512 256 9600
attach kiss port0 10 lan10
attach kiss port0 14 users14

Note that only the first interface attached (which is the one that 
actually configures the serial port!) needs to be specified as a 'polled kiss'
interface. The additional interfaces will be automatically attached in 
polled kiss mode.

Attaching a SLIP connection.

slip -  is serial line ip.  It means you want to connect another Data Engine, or a PC
or Unix(tm) system also running slip to the serial port.

attach 1 slip sl0 1025 768 9600

Consult the manual of your host PC or Unix(tm) system for proper physical 
connection information.

Attaching one or more TNCs with Net/Rom or TheNet software

nrs - is Net/Rom Serial protocol.  TNCs with Net/Rom or Thenet eproms use this 
protocol for serial port communication. 

EXAMPLE: Attach the Data Engine serial port at 2400 baud as follows:

attach 1 nrs nrs1 512 236 2400

If you want to connect only one TNC with Net/Rom or TheNet software to 
the DE, see the section on 'Connecting Single and Multiport TNCs'

If you want to connect the DE to two or more TNCs with Net/Rom or 
TheNet code, see the section on 'Connecting to Multiple TNCs in NRS
mode'

Attaching the internal radio ports.

NOTE: port B is simplex only !

The modem type installed in each internal port is automatically sensed when the 
JNOS40 Configuration Manual February 28, 1994 Page 21



port is 'attached'.

Syntax is:

'attach 2|3 name mtu speed [f][n]'

where:
name - is the interface name

mtu - is the maximum transmission unit.
  MTU is tested against interrupt buffer size when
  the ports are attached.  If MTU is too large,
  an error message will result and the 'attach'
  will be aborted.  See below.

speed - is the radio speed.
[f][n] - are optional parameters. f indicates full duplex and n is the value written 
to the mode AUX pins. If both are used, f should lead n !(This is used in the 
Kantronics 1200Bd modem to choose the type of CD circuitry to be used.

n = 0 (DEFAULT) is sine wave detection as DCD
n = 1 is the signal from the 3105 modem chip as DCD
n = 2 is the external cd signal as DCD  )

Examples:
attach 2 port2 256 1200 2
attach 3 port2 768 2400 f1
attach 2 port2 1024 9600 f

Modem types A,B and D have been tested by WG7J.  Type D (the simple loop back
for testing) is set to full duplex always, and can NOT (yet) be used in port B.  Type 
C modems (TAPR K9NG, etc.) have not been tested, but might work.
Note:  with the type B modem, the speed parameter is a "don't care" value since 
both rx and tx are externally clocked.  The value for speed will show up in the 
'ports' display though.

HINT: If you have a DE1200 modem that you might want to replace with a 
DE9600 modem in the future, and don't want to have to reburn eproms, or if you 
want to change the modems to opposite slots or whatever, consider the following:

With the type B modem (i.e. DE9600) the speed parameter is ignored.  You may 
enter a value of 1200 which will not hurt anything while a Type B modem is used. 
Later you may plug in a DE1200, modem, type A will be sensed, and the speed 
correctly set to 1200Bd!  The only problem with this approach is that optimal MTU
for higher speeds is usually larger than values useable for 1200 Bd.

The TXTAIL is automatically set to 4 characters at the radio port speed which at 
1200 Bd amounts to 26ms.  If you attach the ports with the 1200bd set as shown 
above, the 'param <iface>' command will always show txtail to be 26ms, since 
this is calculated from the port speed given.  However, if you plug in a 
JNOS40 Configuration Manual February 28, 1994 Page 22



9600/19200 baud modem, this calculation will be in error.  The actual txtail then 
is about 3ms or 1.5 ms, respectively.

If you always will be using DE1200 and DE9600 modems, you should attach
them as:

attach 2 port2 256 1200

MTU and Interrupt Buffer Size

The MTU size for the two internal radio ports is checked against the interrupt 
buffer size when the ports are attached.  If the MTU is too large, the 'attach' will 
be aborted and an error message will be displayed.  CHECK.EXE can be used to 
test for acceptable values before attempting to compile the eprom images.
IBUFSIZE must be set to the appropriate value BEFORE the ports are attached in 
AUTOEXEC.NOS.  The default value is ibufsize=600 which allows for an MTU of 
512.  See the appendices for additional information about the relationship of MTU,
PACLEN, and interrupt buffer size.

Port Descriptions

You can give each port a short description that will be displayed when users type 
the 'P' command at the node.

ifconfig port1 de "144.92 MHz local lan port"
ifconfig port2 de "223.42 MHz cluster port"
ifconfig port3 de "430MHz 19200Bd link to Eugene"

ATTACH LOGICAL INTERFACE COMMANDS

The second type of attach commands is for attaching servers rather than 
hardware ports.  These commands have the same format as in the JNOS program.
Throughout the rest of these sections, we will use the names port1, port2 and 
port3 to indicate the serial port and the two internal ports, respectively.

NETROM

The netrom interface is attached with the 'attach netrom' command.   This 
command should not be needed in autoexec.nos as it is normally executed by 
default when the netrom server is started.  

AXIP
JNOS40 Configuration Manual February 28, 1994 Page 23



To attach an AXIP tunnel, the format is

attach axip <name> <mtu> <ipaddress> <call>

If we have two systems capable of running axip,
'jnos1', call wg7j-1,  ip 44.26.0.162, and the other
'jnos2', call k7uyx-1, ip 44.26.0.98, then:

On one end of the tunnel, jnos1 has the following:

attach axip tunnel1 256 44.26.0.98 wg7j-10

On the other end of the tunnel, jnos2 has the line:

attach axip tunnel2 256 44.26.0.162 k7yux-10

A user connected to jnos1 will now see a new port called 'tunnel1' in the 'P' 
command.  Users connected to jnos2 see a new port called 'tunnel2'.  You can set 
descriptions with the 'ifconfig <iface> description' command.

If ax.25 station ka7ehk wants to connect cross band to jnos1 via jnos2, ka7ehk 
needs to know the callsign of the tunnel interface to use. Here, this call is k7uyx-
10. Thus the following should be sent:

connect wg7j-10 via k7uyx-10.

This is what goes around:

ka7ehk sends the connect attempt.

ka7ehk -> wg7j-10 v k7uyx-10

jnos2 receives this and decides the digi call is for the tunnel interface.

jnos2 swaps calls to keep track of the return path, and digis to port 'tunnel2'

ka7ehk -> wg7j-10 v k7uyx-1*

jnos1 receives this, and replies with the connect acknowledge (via tunnel1)

wg7j-10 -> ka7ehk v k7uyx-1

jnos2 receives this, examines call, swaps and digis to the 'real' radio port
JNOS40 Configuration Manual February 28, 1994 Page 24



       wg7j-10 -> ka7ehk v k7uyx-10*

ka7ehk receives this, and the connection is established. All further data exchange
will follow the same route !

JNOS40 Configuration Manual February 28, 1994 Page 25



PREPARING AUTOEXEC.NOS

The autoexec.nos file is used to supply all of the "cold boot" information to the 
node.  It is the contents of this file plus the optional 'domain.txt' that are burned 
into eprom to set the operational parameters of the node.  In beta versions of 
JNOS40, many parameters could only be set using "Advanced Setup" in CFG.EXE. 
Now, all setup is normally done from autoexec.nos.
The "JNOS/JNOS40 Commands Manual" contains complete information about the 
commands used here.
There are some parameters that need to be configured before you attach 
interfaces to the system because these parameters are used when attaching 
interfaces.
First, you should set the tcp/ip host name of your system.

hostname switch.wg7j.ampr.org.

Next, set the system's IP address. If you have NOT had an IP address assigned, 
contact your area ip-address coordinator to get an assignment.  The 
default "experimental" address should never be used for a network node 
address.

ip address 44.26.1.19

Set the system's AX.25 callsign,

ax25 mycall wg7j-1

If you want the system to be known by an alias, you can set it.  The ax25 alias 
command is synonymous with the 'netrom alias' command, but does NOT
activate netrom.  (See the Commands Manual.)

ax25 alias jnos40

If you are using packets or MTUs larger than 512 byte paclen,  you must change 
the interrupt buffer size.  If you only use smaller packet sizes, you could 
decrease the buffer size to save memory.  CHECK.EXE will produce an 
error message if the interrupt buffers are too small.  See also the section 
on INTERFACE BUFFERS.  The default values, which support 512 byte 
MTUs:

mem nibufs 10
mem ibufsize 600

You can change the default ax.25 paclen that will be used when attaching 
interfaces.  You can also change the paclen for each interface afterward.  To 
change the default paclen from 256 to another value, set

JNOS40 Configuration Manual February 28, 1994 Page 26



ax25 paclen <nnn>

Attaching Interfaces

In order to define routes, assign descriptions and set other functions the 
interfaces must be attached first.  A detailed description of how to attach 
interfaces in JNOS40 is presented earlier.

attach 1 ax25 port1 512 1200 c
attach 2 port2 512 9600 f1
attach 3 port3 1024 9600 f

Configuring AX.25

Setting up everything for AX.25 use can be fairly simple. You have already set the 
system's ax.25 callsign and alias.

Connections will be cut-off after a certain time of inactivity.  Cutoff is controlled by
the T4 timer.  T4 default is 900 seconds.

To change time-out to 10 minutes (600 seconds)
ax25 t4 600

Digipeating is controlled per interface and defaults to OFF.

If you want to allow digipeating via certain interfaces, set:

ax25 digi port1 on|off
ax25 digi port2 on|off
ax25 digi port3 on|off

You might want to set some digipeater routes which is done with the 'ax25 routes'
command.  However, since you do this on a per interface basis, you need to have 
attached the interface first !

Example: IPNODE via k7uyx-2 on port 2

ax25 route add IPNODE port2 k7uyx-2

If you want to allow other than 10 retries, set:

ax25 retries n ; where n = 1 to 10 (5 is a good value)
JNOS40 Configuration Manual February 28, 1994 Page 27



You may want to set AX.25 id broadcasting.  Read the FCC rules and do as you 
think is correct... 

You need to set the broadcast interval, the broadcast text (if any), and you need 
to activate each interface you want to beacon on.

ax25 bcinterval 600
ax25 bctext "NOS for the Data Engine by Johan, WG7J"
ax25 bcport port1 on
ax25 bcport port2 on
ax25 bcport port3 on

In certain cases you might want different beacon text on each interface. This can 
be accomplished with the 'ifconfig <iface> bctext' command.

ifconfig port1 bctext "This is the bctext for port1"

In certain cases, you might want different ax.25 paclen for different interfaces.  
Paclen inititally defaults to the 'ax25 paclen' value (which in turn defaults to 
256),  but can be changed with:

ifconfig port1 paclen 384
ifconfig port2 paclen 64
ifconfig port3 paclen 192

The default settings provided in JNOS40 should meet most requirements for initial
startup; however your particular network might require other values or some 
experimentation may be in order to find the best set of parameters.  Please 
contact your local packet organization for the guidelines and parameter settings 
preferred in your area packet network !

Configuring Net/Rom

First, you have to make netrom available to the system.  If you use the default 
eprom setting that starts the netrom server and attaches the netrom interface 
automatically, 

attach netrom    < - not needed normally

You also need to set an alias

netrom alias jnos40

JNOS40 Configuration Manual February 28, 1994 Page 28



Only if you want a netrom call different from your ax.25 call, use:

netrom mycall wg7j-5

You then need to state which ports you want to activate for netrom and give each 
port an appropriate quality

To disable verbose route broadcasts, add an optional n.  

Activating the interface will automatically poll for routes on that interface. 

netrom interface port1 244
netrom interface port2 192 n
netrom interface port3 191

It is a good idea to tell the other nodes that we just came up.

netrom bcnodes port1
netrom bcnodes port2
netrom bcnodes port3

You might want to adjust the minimum acceptable route quality a little higher

netrom minquality 150

Other default parameters will suffice for most installations.  Please contact your 
local packet organization for the guidelines and parameter settings preferred in 
your area packet network!

Configuring TCP/IP

Setting up tcp/ip can be as 'simple' as setting up a few routes. You might also 
want to adjust the MSS and other settings. See the section ON MSS, ... and the 
'intronos' document (in APPENDICES) for more.
You will probably want to setup some permanent routes to the local ip subnet, and
possibly other subnets.  We have a local subnet in which all address start with 
44.26.1.x, i.e. the subnet mask is 24 bits.  It is located on port1, thus

route add 44.26.1/24 port1

We use local subnets of 8 bits size (i.e. 256 systems), where each gateway (or 
node) is the x.x.x.0 ip address. There are a few neighbor nodes running Data 
Engines, that have local subnets as well.  (These could, of course, also be Thenet 
X1-J nodes.) Those nodes have routes for 44.26.2.x, 44.26.3.x, and 44.26.4.x and 
are all on the 220 cluster frequency (port 2)

route add 44.26.2/24 port2 44.26.2.0
JNOS40 Configuration Manual February 28, 1994 Page 29



route add 44.26.3/24 port2 44.26.3.0
route add 44.26.4/24 port2 44.26.4.0

The rest of the state goes south via the high speed link (port3)

route add 44.26/16 port3 44.26.5.0

North is the 44.116/16 subnet, which we have to reach via netrom.  The NetRom 
to IP gateway in that area is W0RLI-3, with ip address 44.116.0.70.  Thus we need 
to add an ip route, as well as an arp statement to tell the system what the netrom
call is that goes with the gateway ip address.

route add 44.116/16 netrom 44.116.0.70
arp add 44.116.0.70 netrom W0RLI-3

Everything else goes to the WG7J Internet gateway (this is the default route):

route add default port1 44.26.1.16

The system can log and show IP activity.  The node command 'IHeard' will list 
recently heard tcp/ip systems.  The size of the list defaults to 8, but can be 
changed.  

You need to enable the ip-heard facility for each port :

ip hsize 8
ip hport port1 on
ip hport port2 on
ip hport port3 on

Most other parameters should have reasonable default settings; however your 
particular network might require other values and/or some experimentation.  
Please contact your local packet organization for the guidelines and parameter 
settings preferred in your area packet network !

Configuring the Conference Bridge

The conference facilities in JNOS40 can be accessed in three different ways 
described below.  Each way can be turned on or off independently.  Before you 
enable any of these methods, you should set the convers host name to an 
appropriate name with the 'convers host' command.  If not, it will default to the 
string set with 'hostname'.
convers host Corvallis

CONFERENCE CALL ACCESS

In the first method, a user can do an ax25 connect to the conference call.  This 
JNOS40 Configuration Manual February 28, 1994 Page 30



gives direct conference bridge access on the ports you have enabled.  You can set
this call with:

convers mycall qso

You can set a separate inactivity time-out for these ax.25 conference connections 
with the 'convers t4' command.

convers t4 3600         (default is 7200, or  2 hours)

Next, you need to enable the interfaces you want the conference call to be active 
on.  You might not want conference call connections on backbones, or wish to 
avoid confusion with other systems using the same alias for the conference call, 
etc. 

Note: you can only enable the interfaces AFTER you have attached them!

convers interface port1 on
convers interface port2 on
convers interface port3 on

NODE ACCESS

In the second method, a user can connect to the regular node  by connecting to 
the netrom alias (if used), the interface call, or the netrom call (if used).  Then the
user can give the 'C' command to join the conference bridge.  The 'C' command 
defaults to ON, but can be turned off with 'mbox convers off'.

CONVERS SERVER ACCESS

Third, there is the network convers server.  This server listens to telnet port 3600 
and allows both users and remote conference network servers to link to you.  It 
defaults to ON, but can be stopped with the 'stop convers' command.

LINKING TO REMOTE SERVERS

If you want to link to other conference servers, configure as many as you need as 
shown below. You can add new links at any time.

convers link 44.26.2.0
convers link 44.26.3.0

NOTE: it is very important to avoid link loops.  They cause messages to fly around
in circles, thus overloading the network.  E.g. if you link to w0xyz, who in turn 
links to w0abc, there is no need for either one of those to link back to you !  To 
minimize the chances of loops, there is loop detection code built in to the 
conference server.  This will cause links creating loops to be closed as soon as the
loop is detected.  A 'loop detected' message will be sent to the host creating the 
JNOS40 Configuration Manual February 28, 1994 Page 31



loop, and this will keep that host from trying to reestablish the link.

If for any reason you want to refuse links from other hosts (or users for that 
matter), use the 'convers refuse <address>' command to setup addresses to 
refuse.  (Note that this only works for convers server access, not for regular users 
accessing the conference bridge via the conference call or the node 'C' command)

convers refuse 44.26.0.19

You can set an upper limit to the time the system will wait to reestablish (ie. re-
link) a convers link it originated, after it has been lost.

To wait 10 minutes:

convers maxwait 600

A little on CONFERENCE INTERNALS.

 The conference server in JNOS40 is modified from the convers code in NOS.EXE, 
but is identical to the stuff in the JNOS releases.  Messages sent by a user get 
sent to all users on the local system as well as all users on remote systems.  All 
local users get their own copy of a message.  For users at remote systems, only 
one copy of the message is send across all the remote links available. Say there 
are 3 local users, and 2 remote links with 5 and 4 users respectively.  If a local 
user sends a message, there will be 4 copies sent: 2 to the 2 remaining local 
users, and 1 message each across the 2 links.  The message sent across the links 
will then be distributed to the users at each of the linked servers. 

 Sometimes a user connection or a remote links gets backlogged with data to be 
sent. This can happen if the connection goes bad and no more data makes it 
through.  When this condition appears, no more data will be sent across the 
connection.  This will remain so until this backlog condition clears or the 
connection is closed (due to retry time-out or whatever).  Not sending new data 
on backlogged connections avoids data from piling up on the connection, thus 
keeping memory resources busy and slowly grinding the system to a halt.  If the 
condition clears, any new data to be sent will be sent again.  All data that was 
being handled by the convers system while the connection was backlogged is 
lost.

Configuring the Domain Name System

JNOS40 Configuration Manual February 28, 1994 Page 32



The domain name system in JNOS40 consists of two separate parts. There is a 
Domain Client, and a Domain Name Server, or DNS.  The Domain Client is the 
part that figures out what the IP-address is that goes with a certain hostname 
(among many possible other things). The DNS is the network server that provides 
answers to queries from other systems about hostname-ip mappings.

Both the Domain Client and the DNS have a minimum configuration to work 
properly.  To better understand the workings of the Domain Name System, let's 
overview the process of resolving a hostname to ip-address translation in a little 
more detail.

When domain names need to be translated to ip-addresses, both the Domain 
Client and the system's DNS will follow three steps:

First, the Domain Cache is searched for the needed information.  The Domain 
Cache is a small database in the RAM of the system which holds recently 
accessed Domain Records.   At startup, the Domain Cache will be empty.  Each 
time a query is resolved, the answer is given to the requester, and it is also stored
in the cache.  When the cache gets full, the oldest record will be overwritten by 
the new information.

Second, if the answer is not found in the Domain Cache, the system will try to get
it from the internal 'domain.txt' file.  This is a file similar to the domain.txt for the 
PC versions of NOS.  It can contain lots of information on name-to-ip mappings 
and more.  See below for more information on how to create a valid domain.txt 
file.  See the section 'Configuring eproms' on how to configure the eprom images 
with the domain.txt file.

Third, if the information is not found in either the cache or the internal domain.txt 
'file', and f a remote DNS has been configured, the system will try to contact the 
remote DNS next to resolve the query over the network. 

In order for steps two and three to work properly, some configuration has to be 
done.  Let's first do the easy parts.  

First, activate the domain name server:

domain dns on

To add a remote DNS for the system to use,

domain addserver 44.26.1.16

If you add more than one remote DNS, each will be queried in a sequential 
fashion.  Each query will first be sent to the most recently configured DNS (i.e., 
JNOS40 Configuration Manual February 28, 1994 Page 33



the last line in the autoexec.nos file or the last entered from the console).  If this 
DNS times out or does not know the answer, the next most recently configured 
will be tried, and the process repeated until either an ip-to-hostname mapping is 
retrieved or all remote DNS have been tried and failed.

The DOMAIN.TXT file

The domain.txt file will be read by the configuration program CFG.EXE and placed
in ROM at the appropriate place.  The domain.txt file has the same format as in 
other disk-based NOS systems.

The three most important formats of lines in the 'domain.txt' file are described 
below.

This first format is the most common, and could be called 'address' records :

<domain.name> IN A <dotted-decimal-ip-address>

Example:

wg7j.ampr.org. IN A 44.26.1.20

These records allow the domain name system to handle queries that attempt to 
resolve a hostname into an ip address.  Note the mandatory ending period AFTER 
the full name!

The second format is the 'canonical name' record:

<alias.name> IN CNAME <domain.name>

Example:

bbs.wg7j.ampr.org. IN CNAME wg7j.ampr.org.

The canonical name record allows a system to be known by both its primary 
domain name as well as one or more alias names.  NOTE the period after both the
alias.name and the domain.name.  You can have as many CNAME records as you 
wish, but more than one or two is probably not very practical.

The third format is a so-called pointer record:

<reverse-dotted-decimal-ip-address>.IN-ADDR.ARPA. IN PTR 
<domain.name>

Example:

JNOS40 Configuration Manual February 28, 1994 Page 34



20.1.2.6.44.IN-ADDR.ARPA. IN PTR wg7j.ampr.org.

This pointer record allows the domain name system to handle queries that 
attempt to translate an ip address into a hostname.  NOTE the REVERSE order of 
the ip address at the start of the line, with the string '.IN-ADDR.ARPA' attached.  
Also note the periods AFTER the 'ARPA' part AND after the full domain name.

There are additional valid formats, but they are beyond the scope of this 
document.  Consult your local TCP/IP guru or the appropriate RFC's on the Domain
Name System for more.

NOTE:  Domain.txt is loaded in ROM and CANNOT be changed.  Even when linked 
to other domain servers via the 'domain addserver' command, updated 
records are stored only in domain cache so that even though they could 
override records in domain.txt, they will NOT be saved in the event of 
power failure or a commanded re-boot.  They will be stored in the Domain
Cache, and available there for later use as long as the node remains 
powered up.

For additional valid formats, see the sample 'domain.txt' file distributed with this 
package as well as the Request For Comments documents from various Internet 
sites and books on tcp/ip, or contact your local tcp/ip guru.  See also the section 
on Configuring JNOS40 for more...

Configuring RSPF

RSPF is a dynamic path determination scheme.  It is a method to allow the 
network to periodically review resources and evaluate whether paths in use are 
optimal.  To activate RSPF, first set the broadcast address for the destination 
interface.

example port1:

ifconfig port1 broadcast 44.255.255.255  (DO NOT USE THIS
ADDRESS!)

This sample automatically would create a routing entry for 44.255.255.255 in the 
routing table.  This address is the one that you are broadcasting to make the 
network aware of your existence, the same as a netrom node broadcasts 
information about its existence.  If you intend to use RSPF on more than one 
interface, each interface must have its own address.  Otherwise, the routing 
entries will be overwritten by the next definition entered in the table.

Next, configure port1 as an RSPF interface with horizon 32 and a quality of 1 
JNOS40 Configuration Manual February 28, 1994 Page 35



(hops).  These are typical values for an end node.  Replace the 1 with an 8 for 
immediate nodes.

rspf interface port1 1 32

Set the interval between RRH messages.

rspf rrhtimer 900

Define how long it takes until an idle link is suspected to be bad.

rspf suspecttimer 2000

Set the interval between routing updates.

rspf timer 900

There is not much else to do except monitor performance and adjust the 
parameters as you see deviations from your goal.

The RSPF specification is available from most of the sources listed near the front 
of this document.  As of this writing, the most recent version is RSPF20.ZIP.

JNOS40 Configuration Manual February 28, 1994 Page 36



PREPARING THE EPROMS

The JNOS40 code resides in two 1-Mbit (128kx8) eproms.  These eproms replace 
the Kantronics firmware rom that is in socket U7 on the Data Engine board.  
Please consult the manuals provided with your Data Engine for instructions on 
opening up the unit. 
JNOS40 is distributed in two code images. They are both binary eprom images, 
each a 128Kb large.  The CFG.EXE program will modify both distributed images as
described below.  The resulting images will be "burned" into eproms which will be 
placed into the sockets marked U7 and U8.

The CHECK.EXE Program

NOTE:  Both CHECK.EXE and CFG.EXE are version specific.  You must use the 
copies of these programs which are distributed with a particular version of 
JNOS40.  If you attempt to use incorrect versions, an error message will be 
displayed and program execution will stop.

The CHECK.EXE program checks the autoexec.nos file for obvious problems.  It 
will report errors, and allows you to play 'what if' games from a command prompt.
It also allows you to step through your autoexec.nos, simplifying debugging.
Error messages are the same as given from the console or remote sysop 
connection of a running JNOS40 system.  Using CHECK.EXE, error messages also 
indicate the line number where the error occured.
CHECK.EXE has several command line options that can be listed by running it 
with the '-?' help option.  Options can be in any order and are separated by 
spaces or tabs.

The command line options for CHECK.EXE:

<filename> alternate 'autoexec.nos' config file.
-i         interactive after loading of config file.
-q         quiet mode (no output).
-t         trace mode (stop after each line parsed).
-v         verbose mode (show lines being parsed, stop after errors).
-?         produce this help.

If <filename> is not given, 'autoexec.nos' in the current directory is assumed.  If 
the configuration file cannot be found an error message is printed.

Command line options explanations:

-i   places CHECK.EXE in interactive mode, AFTER the configuration file 
JNOS40 Configuration Manual February 28, 1994 Page 37



(autoexec.nos or another file indicated with the <filename> option) is 
parsed.  Interactive mode causes CHECK.EXE to emulate a JNOS40 
system. You will get a command prompt similar to JNOS40 or JNOS 
systems.  All commands are interpreted, but not all will be effective 
because CHECK.EXE is NOT a full working JNOS, it only emulates one.  
Therefore, some command results will be different from a running JNOS40
system. For example, the 'ps' or 'socket' output will differ, because many 
processes and sockets are not started or used. You can exit the 
interactive mode by typing 'exit' at the prompt.

-q   suppresses all output.  CHECK.EXE will end with a return code indicating the 
number of errors that occured in the configuration file.  CFG.EXE uses this
mode to test the configuration file before configuring the emprom 
images.  The -q option overrides the -i, -t and -v options.

-t and -v  options are similar.  They both print the line being parsed before it is 
parsed.  If errors occur, messages will be displayed.  After parsing each 
line, the -t option will always stop and ask you to hit <enter> (or <cr>) 
to continue.  The -v option will stop only if the line produces an error.  In 
both cases, when you are asked for keyboard input, typing 'Q<enter>' 
will stop the parsing of the configuration file.  This is handy when used 
with the -i option, because it allows partial parsing of the configuration 
file to see what the results were to that point.

The CFG.EXE Program

The CFG.EXE program provided with this distribution will configure new eprom 
image files from autoexec.nos (or whatever other name you give the 
configuration file).  CFG.EXE will tell you how many bytes of space the eproms 
have remaining for autoexec.nos and domain.txt.
Next, you will be requested to give a (maximum) seven (7) character name for 
the configured binary eprom images which are to be produced.  The program will 
append the numbers 7 or 8 to the filename to indicate installation in socket U7 or 
U8.  If the name you give is an existing and valid eprom image pair, those images
will be used. 
For example, if you give the name 'CONFIG' then CFG.EXE will check for existence
of the files CONFIG7.BIN and CONFIG8.BIN.  If the name is not an existing or valid 
pair of images, CFG.EXE will create a pair by copying NOS40LO.BIN and 
NOS40HI.BIN to filenames CONFIG7.BIN and CONFIG8.BIN.
CFG.EXE will then read the configuration files.  It will ask you for both 
autoexec.nos and domain.txt file names.  These files can have any name as long 
they are valid filenames.  The CFG.EXE program will call CHECK.EXE to do validity 
checking of the autoexec.nos and domain.txt files.
Next CFG.EXE will read the configuration files from disk and eliminate all 
comments, unneeded spaces, and tabs; and copy the remaining lines into the 
eprom images.  The resulting binary images should be burned into two 128kx8 
JNOS40 Configuration Manual February 28, 1994 Page 38



eproms and be put in sockets U7 and U8.  In the example below, you should use 
the file SAMPLE7.BIN for U7 and SAMPLE8.BIN for U8.

The following is a screen dump of a configuration run.  User entries and program 
output are not differentiated.  You must type in the full names of the autoexec.nos
and domain.txt configuration files if they are different from the defaults.  This 
listing was generated using the autoexec.nos and domain.txt sample files which 
are part of the distribution.  The files were renamed to show how file names 
different from the defaults are entered.

JNOS for the Data Engine(tm)
(c) 1994 Johan. K. Reinalda, WG7J.
v1.00 Feb 20 1994
Eprom Configuration Utility.

16432 bytes space for autoexec.nos and domain.txt .

Enter ROM file name (7 chars max): SAMPLE
Creating new copies of the eprom images...

Enter configuration file name
(<cr>=autoexec.nos): SAMPLE.NOS
Reading SAMPLE.NOS...
Adding 1979 chars in 65 lines (457 comment lines deleted)
to AUTOEXEC.NOS area...

14453 bytes space left for domain.txt .
Enter domain file name
(<cr>=domain.txt or 'none' to skip): SMPLDOMN.TXT
Reading SMPLDOMN.TXT...
Adding 1760 chars in 42 lines (23 comment lines deleted)
to DOMAIN.TXT area...

Outputfile 'SAMPLE7.BIN' created for DE socket marked U7.
Outputfile 'SAMPLE8.BIN' created for DE socket marked U8.

JNOS40 Configuration Manual February 28, 1994 Page 39



WG7J and G8BPQ KISS Mode Operation

The following is taken from John Wiseman's (G8BPQ) excellent BPQ node package.
All credit goes to him for the work he continues to put into that project.  After the 
excerpt from G8BPQ, there is a discussion of an alternate approach - WG7JKISS or 
"bus-contention KISS."

      KISS Proms for use with TheNode and JNOS/JNOS40

"Several PROM images are supplied for for use with TNC2 (or clones), and one for 
use with the TNC220.

KISS is as released with the TCPIP package. I have used this code, and it seems to
work, but it does have loopholes in its buffer management. As I have experienced 
buffering problems with other KISS mode TNCs with TheNode, I've done a version 
which will reset if it runs out. This is a bit drastic, but should keep the system 
going. (Higher level software will retry the discarded messages). If it improves 
things, I'll refine it to discard the oldest. The new eprom image is in the file JKISS.

220KISS is a version of JKISS, modified to run on the TNC220. This version only 
supports the VHF port (port 2) at 1200 baud,and the aync link to the PC is fixed at
2400. The DCD led is driven by software, but is controlled by the DCD signal from 
the modem (ie DCD processing is the same as with the TNC2 - the SOFTDCD 
mode of the 220 is not implemented). Other versions are possible if there is 
sufficient interest - the main problem is that the KISS command set would have to
be extended to include commands for port and speed switching.

Note the software is now set up to run with the clock speed jumper in the 'Low' 
speed position - several people have had problems running in the 'Fast' mode.

BPQKISS - A Multidropped KISS system. (TNC2 and clones only)

I have implemented a system to allow more than one KISS-like TNC to connectto a
single Async port. This is primarily for those running machines with little 
expansion capability, but can also enable the TNCs and transceivers to be located
remotely from the PC with a simple 3 wire link. This could be useful on the lower 
frequencies, where QRM from the PC blocks the receiver (I have real problems 
running a 50meg RX near the PC).  A simple checksum is also added to each 
packet, to reduce the risk of corruption if running on long leads (or even over a 
modem link).

JNOS40 Configuration Manual February 28, 1994 Page 40



The system uses polling to prevent contention on the link.  Each TNC must run 
the BPQKISS program, and each must have a different 'address' byte patched in 
at location 20hex. In the PORTS section of BPQCFG.TXT, PROTOCOL must be set to
KISS, KISSOPTIONS to POLLED,CHECKSUM,ACKMODE and CHANNEL set to 
correspond to the address in the PROM -

     CHANNEL         Address (in byte 20h of PROM)

     A                00h
     B                10h
     C                20h
     D                30h      etc

In theory you can have up to 16, but in practice the maximum will depend on the 
power of the PC and the speed of the radio ports.

Wiring. (PC indicates IBM PC compatibles with DB25 serial port. DE indicates a 
Kantronics Data Engine (tm).)

      PC    DE                 TNC 1           TNC 2

GROUND  7     4    ---------------7----------------7-----------  etc

   TXD 2     5    ---------------2----------------2-----------  etc

   RXD 3     6    --------------------------------------------  etc
                                 |                |
                                 -                -
                                 ^                ^
                                 |                |
                                 3                3

  -
  ^   is a diode (1N914 or similar)

With some TNCs and serial cards, a pulldown resistor may be required from pin 3 
on the PC (10k to -12v is suggested). Thanks to G3ZFJ for this information.

The protocol used for this multidropped option was changed from version 3.59a 
onwards to be compatible with similar software produced by KANTRONICS for 
their range of TNCs. The new version is called BPQKISS, and replaces the old 
JKISSP.

JNOS40 Configuration Manual February 28, 1994 Page 41



For those of you unfamiliar with KISS TNCs, the STA led indicates frames being 
received from the PC and the CON led frames being sent to the PC. On powerup, 
some LEDS should flash about 3 times - which ones depends on the version and 
the RAM size in the TNC.

CWID

I have added CWID to my JKISS and BPQKISS EPROMs. The Callsign to be sent is 
patched into the EPROM image with the program PATCHID, which takes two 
parameters, the required callsign, and the file to patch (either JKISS or BPQKISS). 
Note that the specified file is overwritten, so I suggest you make a copy of the 
original first.

PATCHID G8BPQ JKISS    - Note call must be in upper case

The CW patttern which will be sent is displayed on the screen - please check it, 
just in case my translate table is wrong!

The ID is sent after one minute, then at 29 minute intervals, with a dot length of 
60ms. If my calculations are correct, this equates to 20 WPM.  The ID is send in 
AFSK (assuming a normal AFSK modem), but because of the hardware design it is 
not possible to control which tone corresponds to mark or space - it depends on 
what was sent just before the ID starts.
If you are using a modem with a scrambler (eg G3RUH), then the system wont 
work - the two tones will sound the same. I'd like to know if a CWID facility for 
RUH modems would be useful - if there is a significant demand I'll see if I can find 
a solution.  A simple on-off keying may be possible, but would depend on the PTT 
characteristics of the TX. If you have a better idea, please let me know!

The normal SLOTTIME/PERSISTENCE code is used to minimise collisions with other
stations (hence the interval of 29 mins, allowing a bit of time for congestion, 
without going over the statutory 30 mins interval)."

John Wiseman, G8BPQ
7 March 1991

/*******************************************************************/

WG7JKISS

JNOS40 Configuration Manual February 28, 1994 Page 42



WG7J's bus-contention KISS is a modification of the original KISS program.  It also 
solves the buffer problem by resetting the TNC which is not very graceful, but it 
works.  In addition, it contains serial port contention code which will allow multiple
TNCs to be connected to a serial 'bus' between the TNCs and the host (either 
Personal Computer (PC) or Data Engine (DE))

'Bus' contention is done with a similar scheme used in the popular Net/Rom and 
TheNet diode matrix approach.

When a TNC is about to transmit a frame on the serial port, it checks the status of
the DTR line.  If the line is active, the TNC will wait untill it becomes inactive.  If 
the DTR line is inactive, the TNC will wait a random interval, 0, 10, 20 or 30 
milliseconds.  If after this time the DTR is still inactive, the TNC will activate the 
CTS line and start transmitting the frame.  However, if the DTR line is found active
again (meaning another TNC started transmitting), the TNC will wait until the DTR
line becomes inactive again.  By default each TNC will wait no longer than 60 
seconds before transmitting a frame.  After this time, it is assumed there is a 
problem and the outstanding frame is 'jammed' out the serial port.

JNOS40 Configuration Manual February 28, 1994 Page 43



Each TNC must run the WG7JKISS program and each must have a different 
'address' byte patched in at location 20hex.  Addresses should be as described 
above for the BPQKISS rom:

     CHANNEL         Address (in byte 20h of PROM)

   (BPQ) JNOS
     A     0           00h
     B     1           10h
     C     2           20h
     D     3           30h      etc

NOTE:
   When using the JNOS and JNOS40 tcp/ip programs, the channels above are 
numbers. BPQ channel A is 0, B is 1, C is 2, D is 3, etc.

The WG7JKISS eproms have not been tested with G8BPQ code in a PC or Data 
Engine.  However, it should be possible to use them by configuring multiple kiss 
ports.  The WG7JKISS rom currently does not support POLLED, CHECKSUM or 
ACKMODE operation.

PHYSICAL CONNECTIONS

Hardware Handshaking on the Serial Port

When the serial port is used as a network interface, hardware handshaking is 
supported via the CTS and DTR lines - pins 7 (CTS) and 3 (DTR) on the serial cable
provided with the Data Engine.  Note that handshaking is independent the mode 
of the serial port.  It works with SLIP, KISS, and NRS !
If you don't want to use hardware handshaking, you may either leave DTR and 
CTS unconnected or you can issue the attach command without the [c] parameter
which disables hardware handshaking.  Hardware handshaking is not appropriate 
and is disabled automatically for G8BPQ polled kiss (or 'pkiss') type serial port 
connections.  When using WG7JKISS eproms serial port hardware handshaking is 
not needed and the [c] parameter is a "don't care" as long as the the CTS and RTS
lines are not connected to the serial port.
The following describes how hardware handshaking is implemented  in the Data 
Engine when:
the [c] parameter is activated in the 'attach' command and

the handshaking signal lines are connected.

JNOS40 Configuration Manual February 28, 1994 Page 44



When the Data Engine serial port driver is ready to begin transmission of a frame,
it senses the DTR line.  If DTR is logical '0' ( a positive voltage on the RS-232 line),
it will start transmitting the frame.  Logical '0' is the default state when the DTR 
line is not connected, allowing frames to be transmitted when DTR is not 
connected.  If the DTR line is a logical '1' (a negative voltage on the RS-232 line), 
transmission of the frame will be delayed until the DTR line clears to a logical '0'.  
During the delay period, the DTR state is checked every 50 ms by the Data 
Engine.
While transmitting a frame on the serial port, the Data Engine will set the DTR 
line from a logical 0 to a logical 1 which is a negative voltage on the RS-232 line.  
Handshaking is on a per-frame basis.  Once transmission of a frame has started, 
raising the DTR line will NOT result in that packet being interrupted.  Any 
following frame cannot be sent until the DTR line is lowered again.

Connecting Single and Multiport TNCs

Hooking up a single TNC is easy.  You don't need the hardware handshaking.  
Simply connect RXD,TXD and GROUND between the Data Engine and the TNC.  
Make sure the Data Engine is configured correctly - serial speed, serial mode (slip,
ax25 or netrom), etc. See the appendix ATTACHING INTERFACES for more details.
If you hook up a TNC with a Netrom or TheNet prom installed, don't forget to 
jumper pin 10 to pin 23 on the TNC.  This connection puts the TNC into network 
mode, as opposed to hostmode.  See the next section for additional information 
about using Netrom and NRS protocol.  Of course, you could just burn a kiss 
eprom to use the full services of the DE running JNOS40 and eliminate such 
concerns.
                   DE                              TNC
               RXD (pin 5)     <---->          TXD (pin 2)
               TXD (pin 6)     <---->          RXD (pin 3)
               GND (pin 4)     <---->          SG  (pin 7)

If the TNC has a Net/Rom or TheNet eprom, add:
                                               +-> (pin 10)
                                               |
                                               +-> (pin 23)

Connecting Multiple TNCs in NRS mode

The hardware handshaking described earlier allows the commonly used 'diode 
matrix' scheme to work with the Data Engine.  If you use this approach with 
NET/ROM-configured TNCs, you should also refer to the manual that came with 
your favorite flavor of the NET/ROM compatible code, and to the manual of your 
TNC.  
The TheNet V2.10 manual states the following about hooking up TNC2 clones to 
the diode matrix: 
JNOS40 Configuration Manual February 28, 1994 Page 45



"On EACH DB-25, pins 10 and 23 are jumpered together as are pins 4 and 
20.  Comment:  The original TAPR TNC-2 circuit board layout mistakenly had CTS 
connected to pin 20, instead of pin 4.  It took awhile before manufacturers 
licensed by TAPR caught and corrected this error.  Meanwhile it is good policy to 
simply jumper pins 4 and 20 in case  of a mix of older and newer TNCs being used
in the stack."

The following example shows how to hook up 3 TNCs to the Data Engine via a 
diode matrix.  It can easily be seen how to expand this to more. The diagram is 
basically the same as that in the TheNet 2.10 manual (tnet210_20.doc)  In that 
diagram, connector 1 would be the Data Engine serial port, and Connectors 2,3 
and 4 are TNCs
Diode matrices can be either homebrewed or purchased.  For information on a 
commercially available 6-port diode matrix board, send a SASE to:  NorthEast 
Digital Assn,  PO Box 563,  Manchester,  NH 03105-0563.
If you buy or make, or already have, a diode matrix board with DB25 connectors, 
you simply have to connect a DB25 connector to the RJ45 serial cable connecter 
supplied with the Data Engine.  In order to have this work with the diode matrix 
board, this should be hooked up as follows:
  Function     DE               DB25

   (DTR)     pin 3     <-->    pin 20
   (GND)     pin 4     <-->    pin 7
   (RXD)     pin 5     <-->    pin 3
   (TXD)     pin 6     <-->    pin 2
   (CTS)     pin 7     <-->    pin 5

JNOS40 Configuration Manual February 28, 1994 Page 46



Connection Diagrams for the NRS Diode Matrix

Data Engine pins are marked as DE-x, the others are the TNC connecters.  TNC 
pin numbers are for DB25 connectors.

        -->|-- is a 1N914 diode or equiv.

           +-->|-- C2-2
    |

DE pin 5---+-->|-- C3-2
    |

                +-->|-- C4-2
        (RXD)           (TXD)

                +-->|-- C2-5                         +------ C2-7
    |     |

     DE pin 3---+-->|-- C3-5              DE pin 4---+------ C3-7
    |     |
    +-->|-- C4-5                         +------ C4-7

        (DTR)           (CTS)                (GND)           (GND)

+-->|-- DE-6 +-->|-- DE-7
    | |

Connector 2-3----+-->|-- C3-2       Connector 2-20----+-->|-- C3-5
| |

        (RXD) +-->|-- C4-2                 (DTR)   +-->|-- C4-5
                        (TXD)                                (CTS)

                +-->|-- DE-6                         +-->|-- DE-7
| |

Connector 3-3----+-->|-- C2-2       Connector 3-20----+-->|-- C2-5
| |

        (RXD)   +-->|-- C4-2                 (DTR)   +-->|-- C4-5
                        (TXD)                                (CTS)

+-->|-- DE-6                         +-->|-- DE-7
| |

Connector 4-3----+-->|-- C2-2       Connector 4-20----+-->|-- C2-5
| |

JNOS40 Configuration Manual February 28, 1994 Page 47



         (RXD) +-->|-- C3-2                 (DTR) +-->|-- C3-5
                        (TXD)                                (CTS)

JNOS40 Configuration Manual February 28, 1994 Page 48



Connecting Multiple TNCs with G8BPQ KISS ROMs

This connection is simpler than the diode matrix scheme described for NRS 
connections.  TNCs send  data (not to be confused with handshaking) to only the 
DE and not to other TNCs resulting in fewer connections.

Data Engine pins are marked as DE-x, the TNC connectors are marked C.

       +------ C2-7
|

   DE-4  ---+------ C3-7
|

       +------ C4-7
(Signal Ground)

    +------ C2-2 
|

       DE-5  ---+------ C3-2    (data from the DE to all TNCs )
|

      (RXD)     +------ C4-2
                        (TXD)
                           

   C2-3  --->|--+
                    |
       C3-3  --->|--+-- DE-6    (data from the TNCs to the DE)
                    |
       C4-3  --->|--+
       (RXD)            (TXD)

There are no handshaking signals used with G8BPQ polled-kiss.

JNOS40 Configuration Manual February 28, 1994 Page 49



Connecting Multiple TNCs with WG7JKISS ROMs

The simplicity of connecting the Data Engine to multiple TNCs with G8BPQ is 
limited to the polled kiss environment.  WG7J KISS allows the use of TNCs in KISS 
mode without the overhead caused by polling.  The data connections are identical
to G8BPQ polled-kiss.  WG7J-KISS adds handshaking similar to the NRS scheme.

Signal Data and Ground connections are as described above for G8BPQ.

The handshaking signals are between the TNCs only.

        C2-20 ----+-->|-- C3-5
|

            (DTR)     +-->|-- C4-5
                              (CTS)

            C3-20 ----+-->|-- C2-5
|

            (DTR)     +-->|-- C4-5
                              (CTS)

            C4-20 ----+-->|-- C2-5
|

            (DTR)     +-->|-- C3-2
                              (CTS)

Using the Console

The Data Engine serial port can be used to connect a console instead of a 
network interface.  When connected in console mode, the serial port is 
unavailable as a network interface meaning you cannot attach it.  The console 
can be used to control node functions, perform debugging, and trace activity on 
the internal radio ports.  You cannot originate connections to other stations from 
the console as with Net/Rom and TheNet.
You only need a simple 3-wire connection to connect the receive data, transmit 
data and common lines to connect a terminal or computer to the serial port .
The console is configured with the CFG.EXE program the same as any other 
interface.  The baud rate can be any valid baud rate between 1200 and 9600 Bd.  
Data format is 8 bits, no parity, 1 stop bit (8n1).  The console 'verbose' command 
in autoexec.nos sets how much information is displayed on the console during 
startup.
Battery-backed configuration changes can be made from the console using the 
'add' command.  Configuration data entered in this manner will be retained 
across power cycles and mode switches including commanded state changes.  For
JNOS40 Configuration Manual February 28, 1994 Page 50



example, if you start a server in console mode, when you restart the Data Engine 
with the serial port in network mode, that server will be started again.  If you do 
not want the server in this example to be restarted, then you must delete the 
'add' line while in console mode.
Use the 'trace' command in order to perform protocol tracing on the two internal 
radio interfaces.  Trace works the same as in JNOS.  (See the SYSTEM COMMANDS 
section and the Commands Manual for more detail.)

To use the console: 

1) Turn off power to the Data Engine.
2) Press IN the AUX switch (at the left of the power switch).
3) Turn on power to the Data Engine.

You will get a prompt similar to the JNOS.EXE program,  and probably some error 
messages.  These error messages result from the serial port not being available 
as a network interface, and are of no concern.  From this point, you have the 
same interface as in SYSOP mode.

JNOS40 Configuration Manual February 28, 1994 Page 51



NODE BEHAVIOR

This section is written to provide insight into normal operation of the JNOS40 
node.  It is intended to help a sysop or a user who is new to JNOS40 understand 
basic operating characteristics.
The behavior of the node differs depending on the way a connection is 
established.  The node can be in 'verbose' or 'non-verbose' mode after you've 
connected.  
When connected to the node alias (with any ssid), or via a telnet session, the 
node's response is 'verbose'; i.e. the node gives more feedback about what is 
going on than regular Net/Rom nodes. 

When connected to any of the callsigns or via netrom, the node response is 
'non verbose', like a regular net/rom system, i.e. with minimal feedback.  These 
differences affect the login procedure, and the node 'B' and 'C' commands.

In the following examples, lines marked 'U)' come from the user or his TNC, 
whereas lines marked 'N)' come from the node.  '<-'  and [...] indicate some 
comments.  Assume the user call is K7UYX, the NODE callsign is WG7J-1, and the 
Node alias is JNOS40.

Here is a typical exchange when connecting to the alias ('verbose' mode).  In 
telnet connects, there is a login procedure before the message of the day
which is not shown here.

U) cmd: c jnos40
U) *** connected to JNOS40

N) This is the message of the day! <- this is set with 'motd' cmd.
N)
N) Type ? for help.                <- this always shows
N)
U) C NOSBBS
N) JNOS40:WG7J-1} Trying... the escape character is: CTRL-T

[after some time, during which you can hit the escape char to quit the
connection.....]

N) JNOS40:WG7J-1} Connected to NOSBBS (escape enabled)
.
.
.        [stuff with the bbs, 
. until you disconnect.....]
.
JNOS40 Configuration Manual February 28, 1994 Page 52



.
N) Reconnected to JNOS40:WG7J-1
U) B
N) JNOS40:WG7J-1} thank you k7uyx,
N) for using jnos.wg7j.
U) *** disconnected from JNOS40

-----------------------------------------------------------------

This is the exchange when connected to any call or via netrom ('non-verbose' 
mode):

U) cmd: c wg7j-1
U) *** connected to WG7J-1
N)                       <- the node says nothing more!
U) C NOSBBS
.

.....[after some time, during which you can send the escape character 
to quit the connection]

.
N) JNOS40:WG7J-1} Connected to NOSBBS
.
.
.       [stuff with the bbs,
.               until you disconnect from the BBS]
.
.
.
N) Reconnected to JNOS40:WG7J-1
U) B
U) *** disconnected from WG7J-1

-----------------------------------------------------------------

JNOS40 Configuration Manual February 28, 1994 Page 53



MAKING CONNECTIONS

Making NET/ROM (node) connections with JNOS40 is the same as with Net/rom, 
G8BPQ and TheNet systems.  Simply type 'C NODENAME'.  Use the 'N' command 
to get the Nodes destination table list.
AX.25 downlink connections are identical to the G8BPQ format.  You specify the 
radio port you want to use to make the connection.  Use the P command to get a 
list of ports with a description of each port.  To initiate the connection, type  'C 
PORT CALL'.
TELNET connections are simple; you only have to know the ip-address of the 
system to connect to.  If your JNOS40 node has been configured to use a name-
server, you can simply enter the destination system's hostname (often the 
callsign). 
T 44.26.0.224 or T home.wg7j

TTYLINK connections are the same as telnet connections, only they go to the 
keyboard-to-keyboard server of the tcp/ip system.
TT 44.26.0.225 or TT home.wg7j

Disabling the "stay here" feature

JNOS40 has a stay here feature which allows the circuit to remain complete to the
last node specified in the 'connect' command.  'Stay here' can be disabled by 
added 'd' to the end of the connect command line.  It can be used with or without 
the 'escape' character described in the next section.
The syntax of the connect command is:
C <port> <destination> ['e']['d']   where:

[e] controls escape checking and
[d] disables 'stay here' if present in the command string.
See the JNOS and JONS40 COMMANDS MANUAL for additional explanation of this 
command.

Using the E)scape command and setting the escape character

The escape character can be set to any desired character with the 'E <c>' 
command, where <c> is the character you want to use. You type an 'E', then a 
space, and then the ONE character you want to use as the escape character, 
followed by a return or enter. 
Example:  'E \<enter>' 
The default escape character is CTRL-T, the combination of the control and 'T' 
keys on a pc-style keyboard.

The escape command serves two functions in JNOS40.
1)  It serves as a 'connect attempt abort' command, and,
JNOS40 Configuration Manual February 28, 1994 Page 54



2) if enabled, as a 'remote connection abort' command. 

The 'connect attempt abort' function is ALWAYS active, even when you aren't 
notified by the node; that is, when you connect over netrom or to the node 
callsign (instead of the node's alias.)
The 'remote connection abort' function defaults to ON when connected to the 
ax.25 alias or via telnet, that is, when the node is in 'verbose' mode.  If connected
via net/rom or to the callsign (i.e. 'non-verbose' mode), 'remote connection abort' 
defaults to OFF!  After you've connected, you may toggle the 'remote connection 
abort' function of the escape character with the 'E on' or 'E off' commands

'CONNECTION ATTEMPT ABORT'

Unlike Net/Rom and Thenet, JNOS40 nodes do NOT accept any commands while 
trying to establish a connection for you.  With Net/Rom or Thenet, if you type 'R' 
while waiting for your connection to be established, you get a routes list from the 
node.  This cannot be done with JNOS40.  You can, however, abort the connection 
attempt in progress by typing the 'escape' character. The node will then return 
you to the normal command mode.

For example:

N) JNOS40:WG7J-1}
U) C NOSBBS
N) JNOS40:WG7J-1} Trying... the escape character is: CTRL-T
.....[you get impatient :-)]
U) <ctrl-t>
N) JNOS40:WG7J-1}

'REMOTE CONNECTION CLOSE'

       If Escape checking is enabled, once connected you can disconnect from a 
remote connection by simply typing the escape character.  You will be returned to 
the command session of the node to which you are uplinked.

Example:

N) JNOS40:WG7J-1}
U) C NOSBBS
N) JNOS40:WG7J-1} Trying... the escape character is: CTRL-T
N) JNOS40:WG7J-1} Connected to NOSBBS (escape enabled)
.
...... [blah blah with bbs]
.        [you're done, or the link is slow or whatever]
.
JNOS40 Configuration Manual February 28, 1994 Page 55



U) <ctrl-t>
N) Reconnected to JNOS40:WG7J-1

Finally, if you connect to the 'none-verbose' mode (netrom or callsign), which 
means the escape character checking defaults to off, there is another way of 
turning it on:  
You can add an 'E' or 'e' as the LAST character of the command line requesting 
the next outgoing connection.  You may only do this for the connection being 
added.

Example:  You connect to netrom node JNOS40.  Escape character checking is off 
by default.  You want to use escape character checking while connecting to some 
other station.

U) C JNOS40
N) NODE:W7ABC} Connected to JNOS40
U) C NOSBBS E     <- Request escape checking
.....[after some time].....
N) JNOS40:WG7J-1} Connected to NOSBBS (escape enabled)  <- escape

    char is on!
.        [blah blah with bbs]
.        [you're done, or the link is slow or whatever]
.
U) <ctrl-t> <- The Escape character
N) Reconnected to JNOS40:WG7J-1

JNOS40 Configuration Manual February 28, 1994 Page 56



The Conference Server

The conference server is a round-table chat system that allows multiple users to 
talk to one-another.  Through linking the conference server has the capability to 
span whole states, or countries and parts of the world as is currently done.
The following is a list of conference server commands.  All commands start with 
the '/' character.  

Anything NOT starting with the '/' will be taken as text, and sent to ALL users on 
the channel. Text will show as:
'<user name>: text you typed '

Commands may be abbreviated to their first letter and are not case-sensitive.

/? or /Help Print help
/Bye            End the convers session
/Channel n        Switch to channel n
/Exit           Same as /B
/Invite user      Invite user to join your channel
/Links [Long]     List all connections to other hosts
/Msg <user text>   Send a private message to user
/Personal         Set personal data
/Quit             Same as /B
/Sounds y|n       Turn on bell
/Users            List all users
/Who               List all users
/Write <user text> Same as /M

Once logged into the server, you may use /B, /E or /Q to logoff.

To see the users and some info on where they are, type /U or /W This shows the 
following type of display:

User Host Via Ch. How long Personal data
wg7j Crv-Or 0 2m:34s Johan in Corvallis, OR
wb5bbw SC-Texas Ottawa 10 1d: 2h
kd5iz Alamo Ottawa 10 4h:58s Jack
k7uyx NODE

This display shows there are currently 3 users in the conference system. 

'Host' shows the names of the conference system each user is logged on to. 

JNOS40 Configuration Manual February 28, 1994 Page 57



'Via' shows how your conference system found out about that user. In other 
words, the Ottawa conference server told us (Crv-Or) that on the server 
SC-Texas there is a user named wb5bbw 

'Ch.' shows the channel each user is currently on. There can be up to 65000 
different channels, so you can have conversations in little groups without 
bothering others. 

'How long' shows how long each user has been logged in.
     d = days, h = hours, m = minutes, s = seconds

'Personal data'  shows some info each user has set about him/herself with the /p 
command. Personal data is carried across links only if the remote servers
support it.  Any system running JNOS40, or JNOS1.04 (or later) for the PC 
will show personal data throughout the conference system.

The last line in the user display indicates that the user K7UYX is currently 
connected to the NODE associated with this conference server.

OTHER CONFERENCE COMMAND EXAMPLES:

/L   Links are connections to other conference servers that carry the information 
about users, as well as the data sent across to the other system.  The 
links in a system can be shown with the /L command. '/L L' will show a 
somewhat more elaborate display...

/P  Personal Data can be set with the /P command. It will show in the user display.
To show it, type /P. To set or change, simply type '/P what ever you want' 
This data will be updated across all links available.

/C  Changing channels is easy, simply type '/C number'. A plain '/C' will show your 
current channel.

/I  If you want to invite a conference user or NODE user to join you on your 
current channel, simply type '/I name'.  An invitation message will be sent
to the user indicating you would like them to join you in a conversation.

/M or /W  You can send a private message to a user.  A private message is only 
seen by the user addressed, no matter how many others there are on his 
channel. This works even if you are not on the same channel.

Example:  To send Jack a private message you would type

'/M kd5iz Hi Jack, how are you ?'

Jack would see this as
JNOS40 Configuration Manual February 28, 1994 Page 58



<*wg7j*>: Hi Jack, how are you ?

Note the '*'s which indicate the message was sent as private.

JNOS40 Configuration Manual February 28, 1994 Page 59



The LEDs and the Watchdog Timer

From left to right, the front panel LED's indicate the following:

1 - Push-to-talk port A  (Transmitting data when led is on)
2 - Data Carrier Detect port A  (Receiving data when led is on)

3 - Push-to-talk port B
4 - Data Carrier Detect port B

5 - Serial port transmit packet
6 - Serial port receive packet

7 - At least one user connected to the node shell
8 - 'Health' indicator  (Gets toggled on/off every second);

To reduce power consumption, the LEDs can be toggled on/off with the 'led on|off'
command.  Add 'led off' to your configuration if you don't need the LEDs to 
indicate the status of the ports.

The hardware watchdog in the Data Engine is triggered each time a task switch is 
attempted.  If a process hangs in a loop (i.e. the system crashes), a hard reset will
occur automatically.

JNOS40 Configuration Manual February 28, 1994 Page 60



Bibliography

ARRL Computer Networking Conference Proceedings
   Available from ARRL HQ, Newington CT.
   Send mail to info@arrl.org for an automatic response pointing at
   more information about the ARRL.
   Some of these papers are available online in the directory
   ucsd.edu:/hamradio/packet/tcpip/docs.

   This list is not exhaustive; there are many other interesting
   articles, but these are the ones most relevant to NOS and TCP/IP.

   NOS Overviews and Documentation

NOS Command Set Reference
Ian Wade G3NRW 10th (1991)

NOSVIEW: The On-Line Documentation Package for NOS
Ian Wade G3NRW 11th (1992)

   The KA9Q Internet (TCP/IP) Package: A Progress Report
Phil Karn KA9Q    6th (1987)

Amateur TCP/IP: An Update
Phil Karn KA9Q    7th (1988)

Amateur TCP/IP in 1989
Phil Karn KA9Q    8th (1989)

   Services and Protocols

The Design of a Mail System for the KA9Q Internet protocol
Bdale Garbee, N3EUA 6th (1987)
Gerard van der Grinten, PA0GRI

Finger - A User Information Lookup Service
Michael T. Horne, KA7AXD   7th (1988)

Callsign Server for the KA9Q Internet Protocol Package
Doug Thom, N6OYU 8th (1989)
Dewayne Hendricks, WA8DZP

The Network News Transfer Protocol and its Use in Packet Radio
Anders Klemets, SM0RGV         9th (1990)

A Routing Agent for TCP/IP: RFC 1058 Implemented for the KA9Q
JNOS40 Configuration Manual February 28, 1994 Page 61



Internet Protocol Package 7th (1988)
Albert G. Broscius, N3FCT

Thoughts on the Issues of Address Resolution and Routing in
Amateur Packet Radio TCP/IP Networks

Bdale Garbee, N3EUA 6th (1987)

Another Look at Authentication
Phil Karn KA9Q    6th (1987)

LZW Compression of Interactive Network Traffic
Anders Klemets, SM0RGV         10th (1991)

PACSAT Protocol Suite -- An Overview
Harold Price, NK6K 9th (1990)
Jeff Ward, G0/K8KA

BULLPRO -- A Simple Bulletin Distribution Protocol
Tom Clark, W3IWI 9th (1990)

   Macintosh

KA9Q Internet Protocol Package on the Apple Macintosh
Dewayne Hendricks, WA8DZP   8th (1989)
Doug Thom, N6OYU

Status Report on the KA9Q Internet Protocol Package for the
Apple Macintosh

Dewayne Hendricks, WA8DZP   9th (1990)
Doug Thom, N6OYU

Higher Speed Amateur Packet Radio using the Apple Macintosh
Computer

Doug Yuill, VE3OCU 10th (1991)

   Network design

The Implications of High-Speed RF Networking
Mike Chepponis, K3MC 8th (1989)
Glenn Elmore, N6GN
Bdale Garbee, N3EUA
Phil Karn, KA9Q
Kevin Rowett, N6RCE

Design of a Next-Generation Packet Network
Bdale Garbee, N3EUA 8th (1989)

JNOS40 Configuration Manual February 28, 1994 Page 62



More and Faster Bits: A Look at Packet Radio's Future
Bdale Garbee, N3EUA 7th (1988)

Physical Layer Considerations in Building a High Speed Amateur
Radio Network

Glenn Elmore, N6GN 9th (1990)

Spectral Efficiency Considerations for Packet Radio
Phil Karn, KA9Q 10th (1991)

This should be considered to be required reading.

MACA - A New Channel Acess Method for Packet Radio
Phil Karn, KA9Q 9th (1990)

A Duplex Packet Radio Repeater Approach to Layer One
Efficiency 

Robert Finch, N6CXB 6th (1987)
Scott Avent, N6BGW

A Duplex Packet Radio Repeater Approach to Layer One
Efficiency, Part Two

Scott Avent, N6BGW 7th (1988)
Robert Finch, N6CXB

   Network Implementation

Packet Radio at 19.2 kB -- A Progress Report
John Ackermann, AG9V 11th (1992)

Implementation of a 1Mbps Packet Data Link
Glenn Elmore, N6GN 8th (1989)
Kevin Rowett, N6RCE

Hubmaster: Cluster-Based Access to High-Speed Netowrks
Glenn Elmore, N6GN 9th (1990)
Kevin Rowett, N6RCE
Ed Satterthwaite, N6PLO

    
Recent Hubmaster Networking Progress in Northern California

Glenn Elmore, N6GN 9th (1990)
Kevin Rowett, N6RCE

The 56 kb/s Modem as a Network Building Block: Some Design
Considerations

    Barry McLarnon, VE3JF 10th (1991)
JNOS40 Configuration Manual February 28, 1994 Page 63



Digital Networking with the WA4DSY Modem - Adjacent Channel
and Co-Channel Frequency Reuse Considerations

    Ian McEachern, VE3PFH 10th (1991)

A Full-Duplex 56kb/s CSMA/CD Packet Radio Repeater System
Mike Chepponis, K3MC 10th (1991)
Lars Karlsson, AA6IW

A High Performance, Collision-Free Packet Radio Network
Phil Karn KA9Q 6th (1987)

Adaptation of the KA9Q TCP/IP Package for Standalone Packet
Switch Operation

Bdale Garbee, N3EUA 9th (1990)
Don Lemley, N4PCR
Milt Heath

   Hardware

The KISS TNC: A Simple Host-to-TNC Communications Protocol
Mike Chepponis, K3MC 6th (1987)
Phil Karn, KA9Q

The Ottawa Packet Interface (PI) A Syncrhonous Serial PC
Interface for Medium Speed Packet Radio

Dave Perry, VE3IFB 10th (1991)

HAPN-2: A Digital Multi-Mode Controller fo the IBM PC
John Vanden Berg, VE3DVV 11th (1992)

The PackeTen system - The Next Generation Packet Switch
Don Lemley, N4PCR 9th (1990)
Milt Heath

---------------------------------------------------------------------

JNOS40 Configuration Manual February 28, 1994 Page 64



APPENDIX A  Sample Autoexec.nos for the Data Engine (tm)

##This is a SAMPLE ONLY ! Please modify per your own needs.
##This configuration has nothing fancy, just the basics to get you going...
##MY COMMENTS start with ##, other comment lines with a single #
##are possible commands that might or might not be useful...
##
##Comments and blank lines, and extra (unneeded) tabs and spaces
##are automatically removed by CFG.EXE!

##set the console baudrate to 4800 bd (the default is 9600)
#cbaud 4800

##when in console mode, show autoexec.nos lines as they are executed
#verbose on

##---------------------
##SYSTEM VARIABLES

##minimum memory allocation size
memory minalloc 64

##the tcp/ip hostname
hostname jnos.wg7j

##the ip address. You can set per-interface ip addresses with
##the 'ifconfig' command. See further down.
ip address 44.26.1.17

##the ax.25 callsign. By defaut, this call is also used for our
## netrom call (if configured). This can be changed, see further down
ax25 mycall wg7j-11

##ax.25 and net/rom alias. You can set a different netrom alias if needed
##see further down
ax25 alias jnos40

##----------------------------------------
## AX.25 SYSTEM DEFAULTS
## If you want to change ax.25 parameters on a system wide basis,
## you need to do so BEFORE you attach any interface. After attaching,
## you should use the 'ifconfig <iface> ax25' command to change them.
## Values shown below (other then bctext) are the system defaults

##ax25 id broadcasting. Read the Fcc rules and do as you think is correct :-)
##Every 10 minutes (default).
APPENDIX A Sample AUTOEXEC.NOS Page 65



#ax25 bcinterval 600
##You can turn this off with
#ax25 bcinterval 0
##set the default broadcast text. Can be changed per interface.
ax25 bctext "JNOS for the Data Engine by Johan, WG7J"

##the backoff limit (number of times the retry timer is backed off maximally)
#ax25 blimit 31

##initial round trip time estimate
#ax25 irtt 5000

##number of unacked outstanding frames
#ax25 maxframe 1

##wait a maximum of 30 secs for a retry timeout. (default)
#ax25 maxwait 30000

##the packet length
#ax25 paclen 256

##the poll threshhold
#ax25 pthresh 128

##the number of retries
#ax25 retries 5

##use linear backoff scheme (default)
#ax25 timer linear

##the t3 (keep alive) timer
#ax25 t3 0

##the connection redundancy timer (15 minutes)
#ax25 t4 900

##the protocol version
#ax25 version 2

##the window size
#ax25 window 2048

##----------------------------------------
## TCP SYSTEM DEFAULTS
## If you want to change tcp parameters on a system wide basis,
## you need to do so BEFORE you attach any interface. After attaching,
## you should use the 'ifconfig <iface> tcp' command to change them.
APPENDIX A Sample AUTOEXEC.NOS Page 66



## Values shown below are the system defaults

##maximum segment size; this is automatically adjusted to iface-mtu - 40,
##or the mss value, wich ever is smaller...
#tcp mss 432

##initial round trip time estimate
#tcp irtt 5000

##the backoff limit (number of times the retry timer is backed off maximally)
#tcp blimit 31

##the window size
#tcp window 864

##number of retries before failing...
#tcp retries 5

#tracing of tcp state changes only works in console-mode !
#tcp trace 0

##send a sync and possible data in one frame
#tcp syndata 1

##default to linear backoff, a bit more aggressive then exponential
#tcp timer linear

##set a maximum to the wait-for-reply time. Default is off, no limit
#tcp maxwait 0

##---------------------------
##ATTACHING INTERFACES

##serial port. A single TNC with a kiss eprom
##name = 'home', buffer = 1k, mtu 512, speed 9600Bd
attach 1 ax25 home 1024 512 9600
ifconfig home descr "KISS connection to development PC."

##if you want cts handshaking, see the docs,
##and add a 'c' as the last parameter.
#attach 1 ax25 home 1024 512 9600 c

##you can also attach it as  serial ip (SLIP)
APPENDIX A Sample AUTOEXEC.NOS Page 67



#attach 1 slip home 1024 512 9600
#ifconfig home descr "SLIP connection to development PC."

##or as a NRS (Netrom Serial) to a NetRom Tnc
#attach 1 nrs home 1024 512 9600
##if more then one (ie. a diode matrix) add cts handshaking
#attach 1 nrs home 1024 512 9600 c
#ifconfig home descr "NRS to Net/Rom cluster"

##the interrupt buffer pool is used during receive of the radio ports
##default is 10 buffer of 600 bytes each. See the docs for more info.
memory nibufs 10
memory ibufsize 600

##port A (ie attach 2)
##using a speed of 1200 bd will allow both 9600 and 1200 bd modems
##to be interchanged WITHOUT reburning eproms! (see the docs as well)
##The modem type is sensed automatically
##name is "430", mtu 256, speed 1200
attach 2 430 256 1200
ifconfig 430 descr "19k2 test on 430.55 MHz"

##if you want a different ip address for this port use
#ifconfig 430 ipaddress 1.2.3.4

##port B (ie attach 3)
##name is "2m", mtu 256, speed 1200.
attach 3 2m 256 1200
ifconfig 2m descr "1200Bd 144.92 MHz Corvallis LAN port."

##---------------------------------------------------
## NETROM System variables
## These are the defaults

##set the 'choke' state timeout
#netrom choketime 180000

##derate routes if connections fail
#netrom derate on

##don't emulate g8bpq nodes
#netrom g8bpq off

##don't show 'hidden' nodes in 'N' listing
#netrom hidden off

APPENDIX A Sample AUTOEXEC.NOS Page 68



##initial connection round trip time
#netrom irtt 45000

##the window of outstanding data##the minimum quality routes to accepted 
from broadcasts
#netrom minquality 10

##broadcast our routes every 30 minutes
#netrom nodetimer 1800

##keep a maximum of 3 different routes to a node
#netrom numroutes 3

##decrement the obsolecsence count every 30 minutes
#netrom obsotimer 1800

##the initial 'obsolescence' count (I didn't invent that :-) )
#netrom obsoinit 6

##the minimum count needed to broadcast a route
#netrom obsominbc 4

##don't accept 'weird' nodes in broadcasts...
#netrom promiscuous off

##set the transmit queue limit
#netrom qlimit 512

##set the maximum number of retries before failing
#netrom retries 3

##set the inactivity timeout, 15 minutes
#netrom tdisc 900

##use linear timers
#netrom timertype linear

##if you want to reach nodes many hops away, you might adjust the ttl
#netrom ttl 10

## the sliding window size...
#netrom window 2

##------------------------------
## ACTIVATE NETROM INTERFACES
APPENDIX A Sample AUTOEXEC.NOS Page 69



##the pseudo netrom interface. attached automatically !
#attach netrom

##if 'netrom mycall' isn't set, the ax25 call (ie wg7j-1) is used
#netrom mycall wg7j-1

##set the alias ! Only needed if 'ax25 alias' is not set...
#netrom alias jnos40

##'netrom interface <iface> <qual> <minbcqual>'
##activate the interfaces, set their qualities, and their minimum
##broadcast qualities. NOTE: this has changed from versions < 1.00 !
##if no minbcqual is given, the 'autofloor' value is used.
##if minqual < qual, in effect all routes are broadcast!
##if minqual = 0, NO routes are broadcast (but still our own id!)
##no verbose broadcasting on the local lan frequency (interface 2m)

netrom interface home 255 200
netrom interface 2m 191 0
netrom interface 430 224 175

##announce we're there
netrom bcnodes home
netrom bcnodes 2m
netrom bcnodes 430

##poll others for routes, this is automatically done when an interface
##is activated !
#netrom bcpoll home
#netrom bcpoll 2m
#netrom bcpoll 430

##--------------------------------
##CONVERS stuff

##the convers system name
convers hostname Corvallis

##message of the day
convers motd "This is a Data Engine running JNOS40,\nlocated in Corvallis, OR, 
USA"

##an easy call for the local users to remember
convers mycall chat
APPENDIX A Sample AUTOEXEC.NOS Page 70



##set an inactivity timeout for users. default is 2 hours
#convers t4 7200

##I link to a server in Ottawa, Canada at hs.ve3jf.ampr.org.
#make sure you have a route configured in the routing section!
#convers link 44.135.96.7

##if the link times out, retry wait a max of 10 minutes (600 secs)
#convers maxwait 600

##activate all interfaces for ax.25 convers call access
convers interface home on
convers interface 2m on
convers interface 430 on

##give mailbox users access to convers via the 'CONV' command
mbox convers on

##set maximum queue sizes for users and hosts. If the outstanding data
##reaches this limit, the link is terminated. This keeps the system
##from wedging out...
##these are the defaults

##users
#convers umaxq 512

##host links
##note that if you have many links, and little ram (ie only 64k)
##this limit is on the high side; 1024 or less would be better!
#convers hmaxq 2048

##if you want filter out certain host links
#convers filter mode refuse
#convers filter 1.2.3.4
#convers filter 1.2.3.5

##ior, if you only want to accept certain host links
#convers filter mode accept
#convers filter 1.2.3.4
#convers filter 1.2.3.5

##if you want to refuse anything (host link, and tcp users)
##from certain ip addresses
#convers refuse 1.2.3.6

##start the tcp/ip convers server. NOT started automatically!
APPENDIX A Sample AUTOEXEC.NOS Page 71



##you need to this for tcp users to access convers, and for others to
##be able to link to you !
start convers

##-----------------------
## STARTING SERVERS

##start the servers. These are started by default,
##unless you changed it with CFG.EXE
#start ax25
#start netrom
#start telnet
#start finger
#start remote

##you can offcourse stop any of the above
#stop ax25
#stop netrom
#stop telnet
#stop finger
#stop remote

##NOTE: The following are NOT started automatically !
#start rip

##-----------------------------
## ROUTING
##now the hard part, the ip routes
##
##Note that i don't use rip or rspf, because we have a very
##limited number of tcp nodes and few users...
##thus, there are no examples either on how to use those...

##my 2nd Data Engine is on port 430
route add 44.26.1.18 430

##the local lan is on port 2m
route add 44.26.1/24 2m

##my 'home.wg7j' development system is on the serial port
route add 44.26.1.19 home

##add some netrom routes. First add an arp for their netrom callsign
arp add 44.116.0.48 netrom wa7gfe-3 netrom
APPENDIX A Sample AUTOEXEC.NOS Page 72



##now add the actual route
route add 44.116.0.48 netrom 44.116.0.48

arp add 44.116.0.139 netrom ac7n-3 netrom
route add 44.116.0.139 netrom 44.116.0.139

arp add 44.24.0.8 netrom wb7dch-3 netrom
route add 44.24.0.8 netrom 44.24.0.8

##w0rli is the gateway for the other pdx area stuff
arp add 44.116.0.70 netrom w0rli-3 netrom
route add 44.116/16 netrom 44.116.0.70

##other traffic goes to the gateway, also on port 2m
route add default 2m 44.26.1.16

##here is a little trick. I want 'home.wg7j' to appear to be directly
##on the local LAN ! We set up a proxy arp for it on the 2m lan freq.
##such that others think our ax.25 call on the lan port goes with the ip
##address for 'home.wg7j' . The above routes take care of the rest !
arp publish 44.26.1.19 ax25 wg7j-11 2m

##------------------------
## AX.25 CONFIGURATION

##regular digipeating can be enabled (default is off!)
ax25 digipeat home on
ax25 digipeat 2m on
ax25 digipeat 430 on

##broadcasting is ON by default, but can be turned off.
#ax25 bcport home off
#ax25 bcport 2m off
#ax25 bcport 430 off

##setup crossband digipeating. I use the interface name is the
##crossband digipeat callsign...
ifconfig home ax25 cdigi home
ifconfig 2m ax25 cdigi 2m
ifconfig 430 ax25 cdigi 430

##We can set AX.25 parameters per interface, if different from defaults
##On the high speed port, set a different broadcast message.
ifconfig 430 ax25 bctext "19k2 Bd High Speed Port !"

APPENDIX A Sample AUTOEXEC.NOS Page 73



##i want a shorter AX.25 Irtt
ifconfig 430 ax25 irtt 2000

##also a longer paclen
ifconfig 430 ax25 paclen 512

##and a > 1 maxframe
ifconfig 430 ax25 maxframe 4

#and a short maxwait before retry times out (10 secs)
ifconfig 430 ax25 maxwait 10000

##----------------------
## NODE CONFIGURATION & MESSAGES

##nodeshell sign-on message
motd "JNOS for the Data Engine."

##set some emergency information
ax25 ecall pwrdwn
etext "System is running on backup power. Please contact sysop!"

##the node shell 'I' command shows this
info "Data Engine Switch in Corvallis, OR. Run by Johan, WG7J"

##redirect sysop chat attempts to my home pc's tty-link listener
##default port is 87, the ttylink port
sysop 44.26.1.19 87

##use the local callsign server running Buckbook CD-Rom
##(with the default tcp port 1235)
callserver 44.26.1.3 1235

##set an alias to make local bbs access on port 2m easier !
mbox alias bbs "c 2m crvbbs"
##access a weather info server...
#mbox alias wx "f wx@1.2.3.4"

##set passwords
password 0123456789
remote password 0123456789

##------------------------------
APPENDIX A Sample AUTOEXEC.NOS Page 74



## DOMAIN SYSTEM SETUP

##setup a domain name server, if any. The last argument is the timeout
##to use for the query (in seconds)
domain addserver 44.26.1.16 30

##if you have loaded a good size domain.txt,
##and want other to use your system as a DNS
#domain dns on

##also if you have loaded a domain.txt that should resolve
##most or all of the local ip->name translations, you might do:
#domain translate on

##---------------------------------------
## ICMP setup
##

##respond to echo requests (ping's)
#icmp echo on

##don't send a source quench when memory is low
#icmp quench off

##allow 'traceroutes' to show us. ie send a 'ttl exceeded' message
#icmp time on

#show icmp status tracing; only works on console mode
#icmp trace off

##-------------------------
## HEARD LOGGING

##heard logging on all interfaces
##this is the default when attaching ax.25 interfaces
##you can turn it off
#ax25 hport home off
#ax25 hport 2m off
#ax25 hpport 430 off

##IP heard logging on all interfaces
##this is the default when attaching interfaces
#ip hport netrom on
#ip hport home on
APPENDIX A Sample AUTOEXEC.NOS Page 75



#ip hport 2m on
#ip hport 430 on

##if you want to listen to arp's on the network
##turn on arp eaves dropping
arp eaves home on
arp eaves 2m on
arp eaves 430 on

APPENDIX A Sample AUTOEXEC.NOS Page 76



APPENDIX B   Of PACLEN, MTU, MSS, and More

Setting Bufsize, Paclen, Maxframe, MTU, MSS and Window

Many Nos users are confused by these parameters and do not know how to set 
them properly.  This chapter will first review these parameters and then discuss 
how to choose values for them.  Special emphasis is given to avoiding 
interoperability problems that may appear when communicating with non-Nos 
implementations of AX.25.

1.  AX25 Parameters

1.1.  Paclen

Paclen limits the size of the data field in an AX.25 I-frame. This value does not  
include  the  AX.25  protocol header (source, destination, digipeater addresses, 
control and pid bytes).  The AX.25 V2 protocol specifies a maximum of 256 bytes 
for the paclen. Be aware that some AX.25 implementations can not handle paclen
greater then this, however NOS derived systems can handle this situation. This 
may cause interoperability problems. Even Nos may have trouble with certain 
KISS TNCs because of fixed-size buffers. The original KISS TNC code for the TNC-2 
by  K3MC can handle frames limited in size only by the RAM in the TNC, but some 
other KISS TNCs cannot.
Since unconnected-mode (datagram) AX.25 uses UI frames, the paclen value has 
no effect in unconnected mode. IE. if you run IP in Datagram mode, you can still 
have an MTU > Paclen !  (As long as your receive buffers can handle the mtu size;
see INTERFACE BUFFERS...)
In JNOS40, and JNOS v1.05 (and greater), paclen can be set on a per interface 
basis with the 'ifconfig <iface> paclen ###' command. Thus you can have a 
paclen of 256 on one interface and a smaller or larger on other interfaces. When 
you first attach an interface, the paclen defaults to the value of the 'ax25 paclen' 
setting (this defaults to 256.) 
If you want to carry netrom data over ax.25 links, the system needs to make sure 
the paclen is large enough to handle the netrom MTU sized data. Net/rom mtu is a
maximum of 236; with a 20 byte header for the routing, this gives a data size of 
256 to be send with ax.25 packets. 
In most versions of NOS.EXE, you can get problems when you use netrom and set 
the paclen < 256. When the ax.25 layer gets to send netrom frames, it cannot 
handle the whole data in one packet. It will then split it up in several smaller 
frames, using the AX.25 Version 2.1 fragmentation scheme. However, TheNet, 
Net/Rom, G8BPQ, MSYS and other nodes CAN NOT handle this type of  
fragmentation, resulting in impossible connections !
However, if you are running JNOS40, or JNOS v1.05 (or greater) for the PC, you 
need not worry about this.  These 2 version of NOS have been modified to never 
provide more then paclen sized netrom data to the ax.25 layer ! Thus the above 
problem will never happen...
APPENDIX A Sample AUTOEXEC.NOS Page 77



1.2.  Maxframe

This parameter controls the number of I-frames that may be send on an  AX.25 
connection before it must stop and wait for an acknowledgement.  Since the 
AX.25/LAPB sequence number field is 3 bits wide, this number cannot be larger 
than 7. It can be shown that the optimal value is 1.
Since unconnected-mode (datagram) AX.25 uses UI frames that do not have 
sequence numbers, this parameter does not apply to unconnected mode.
2.  IP and TCP Parameters

2.1.  MTU

The MTU (Maximum Transmission Unit) is an interface parameter that limits the 
size  of  the largest IP datagram that it may handle. The MTU is the sum of the 
size of the data inside the IP header (TCP of UDP most likely), and the size of the 
IP header itself.  IP datagrams routed to an interface that are larger than its MTU 
are each split into two or more IP fragments.  Each fragment has its own IP 
header and is handled by the network as if it were a distinct IP datagram, but 
when it arrives at the destination it is held by the IP layer until all of the other 
fragments belonging to the original datagram have arrived. Then they are 
reassembled back into the complete, original IP datagram.  The minimum 
acceptable interface MTU is 28 bytes: 20 bytes for the IP (fragment) header, plus 
8 bytes of data.
There is no default MTU in Nos; it must  be  explicitly  specified  for  each 
interface as part of the 'attach' command. This is not the case for the netrom 
interface.  Since ip data is carried inside a 'regular' netrom frame, the ip data 
should never be larger then the maximum data size the netrom protocol can 
handle.  The default mtu here is 236, wich is the protocol maximum.
If you plan on running IP in Datagram mode (the default), you can have an MTU 
that is larger then the paclen for that interface.  However, you should still be 
aware of the constraints of the receiver buffer size! (See INTERFACE BUFFERS)
If you plan on using IP in Virtual Connect, or VC, mode, you should be aware of 
the following.  If you set the IP MTU larger then paclen for the interface, you will 
hand a packet to the ax.25 layer that is larger then what it can send in one 
packet.  Thus you will get AX.25 V2.1 fragmentation. If you are exchanging ip 
data with NOS based stations only, you have no problems (other then the 
fragmentation).
If you are interfacing with stations other then NOS bases systems, you again will 
have troubles, like with netrom.  They will most likely not be able to handle the 
packets correctly. Thus be aware that in this case you should set the mtu to equal 
the paclen, to avoid these problems.
2.2.  MSS

MSS (Maximum Segment Size) is a TCP-level parameter that limits the amount of 
data that the remote  TCP will send in a single TCP packet. MSS values are 
exchanged in the SYN (connection request) packets that open a TCP connection.  
In the Nos implementation of TCP, the MSS actually used by TCP is further 
APPENDIX A Sample AUTOEXEC.NOS Page 78



reduced in order to avoid fragmentation at the local IP interface.  That is,  the 
local TCP asks IP for the MTU of the interface that will be used to reach the 
destination.  It then subtracts 40 from the MTU value to allow for the overhead of 
the TCP (20 bytes) and IP (20 bytes) headers.  If the result is less than the MSS 
received from the remote TCP,  it is used instead.

APPENDIX A Sample AUTOEXEC.NOS Page 79



2.3.  Window

This is a TCP-level parameter that controls how much data the local TCP  will allow
the remote TCP to send before it must stop and wait for an acknowledgment. The 
actual window value used by TCP when deciding how much more data to send  is  
referred  to  as  the effective window.  This is the smaller of two values: the 
window advertised by the remote TCP minus the unacknowledged data in  flight, 
and the congestion window, an automatically computed time-varying estimate of 
how much data the network can handle.

2.4.  Discussion

2.4.1.  IP Fragmentation vs. AX.25 Segmentation

IP-level fragmentation often makes it possible to interconnect two dissimilar 
networks, but it is best avoided whenever possible.  One reason is that when a 
single IP fragment is lost, all  other  fragments  belonging  to  the  same datagram
are  effectively  also  lost  and  the  entire  datagram  must  be retransmitted by 
the source.  Even without  loss, fragments require the allocation of temporary 
buffer memory at the destination, and it is never easy to decide how long to wait 
for missing fragments before giving up and discarding those  that  have already 
arrived.  A reassembly timer controls this process.  In Nos it is  (re)initialized with 
the 'ip  rtimer' parameter  (default  30 seconds)  whenever  progress  is made in 
reassembling a datagram (i.e., a new fragment is received).  It is not necessary 
that all of the fragments belonging  to  a  datagram  arrive  within a single time-
out interval, only that the interval between fragments be less than the time-out.
Most commercial sub networks that carry IP have MTUs of  576 or more, so 
interconnecting them with sub networks having smaller values can result in 
considerable fragmentation. For this reason, IP implementors working with links or
subnets having unusually small packet size limits are encouraged to use 
transparent fragmentation, that is, to devise schemes to break up large IP 
datagrams into a sequence of link or subnet frames that are immediately 
reassembled on the other end of the link or subnet into the original,  whole IP 
datagram without the use of IP-level fragmentation.
Such a scheme is provided in AX.25 Version 2.1. It can break a large IP or 
NET/ROM datagram into a series of paclen-sized AX.25 segments (not to be 
confused with TCP segments), one per AX.25 I-frame, for transmission. 
Subsequently, it can reassemble them into a single datagram at the other end of 
the link before handing it up to the IP or NET/ROM module.
Unfortunately, the segmentation procedure is a new feature in AX.25 and is not 
yet widely implemented; in fact, Nos and derived software, is so far the only 
known implementation. For regular NOS systems this can create some 
interoperability  problems between Nos and non-Nos nodes. However, JNOS40 and
JNOS 1.05 (or later) have provisions built in to avoid these problems. This problem
is discussed further in the  section on setting the MTU.
2.4.2.  Setting MTU

APPENDIX A Sample AUTOEXEC.NOS Page 80



TCP/IP header overhead considerations similar to those of the AX.25 layer when 
setting paclen apply when choosing an MTU.  However, certain sub network types
supported by Nos have well-established MTUs, and these should always be used 
unless you know what you're doing: 1500 bytes for Ethernet, and 508 bytes for 
ARCNET.  The MTU for PPP is automatically negotiated, and defaults to 1500.  
Other subnet types, including SLIP and AX.25, are not as well standardized.
SLIP has no official MTU, but the most common implementation (for  BSD  UNIX) 
uses an MTU of 1006 bytes.  Although Nos has no hard wired limit on the size of a 
received SLIP frame, this is not true for all other systems. Interoperability 
problems may therefore result if larger MTUs are used in Nos.
Choosing an MTU for an AX.25 interface is more complex.  When the interface 
operates in datagram (UI-frame) mode,  the paclen parameter does not apply. The
MTU effectively becomes the paclen of the link.
However, when using AX.25 CONNECTIONS to send IP packets, data will be 
automatically segmented into I-frames no larger than paclen bytes. 
Unfortunately, as also  mentioned earlier, Nos is so far the only known 
implementation of the new AX.25 segmentation procedure. Thus, if you are 
exchanging IP over connections (i.e. VC mode) with none-NOS based systems, it 
might be needed to avoid AX.25 segmentation. Thus you should make sure that 
packets larger than paclen are never handed to AX.25.  In order to assure this, 
you should not set the MTU greater then the paclen.
On the other hand, if you do not send IP over connections, but in datagram mode,
you can use a larger MTU. Here, you are limited by the receive buffer size (and 
the tolerance of other network users for your large packets and proportionally 
greater bandwidth share !).
For connections carrying IP between NOS systems (i.e. NOS-NOS VC mode), you 
can let AX.25 segmentation do it's thing.  If you choose an MTU on the order of 
1000-1500 bytes, you can largely avoid IP-level fragmentation and reduce TCP/IP-
level header overhead on file transfers to a very low level. And you are still free to
pick whatever paclen value is appropriate for the link.
2.4.5.  Setting MSS

The setting of this TCP-level parameter is somewhat less critical than the IP and  
AX.25 level parameters already discussed, mainly because it is automatically 
lowered according to the MTU of the local interface when  a  connection is  
created.  Although this is, strictly speaking, a protocol layering violation (TCP is 
not supposed to have any knowledge of the workings of lower layers) this 
technique does work well in practice.  However, it can be fooled; for example, if a 
routing change occurs after the connection has been opened  and  the new local 
interface has a smaller MTU than the previous one, IP fragmentation may occur in
the local system.
The only drawback to setting a large MSS is that  it  might  cause avoidable 
fragmentation at some other point within the network path if it includes a 
"bottleneck" subnet with an MTU smaller than that  of  the  local  interface. 
(Unfortunately,  there  is  presently  no  way to know when this is the case.
There is ongoing work within the Internet Engineering Task Force on a  "MTU 
Discovery" procedure to determine the largest datagram that may be sent over a 
APPENDIX A Sample AUTOEXEC.NOS Page 81



given path without fragmentation, but it is not yet complete.)  Also, since the  
MSS  you specify is sent to the remote system, and not all other TCPs do the MSS-
lowering procedure yet, this might cause the remote  system  to  generate IP 
fragments unnecessarily.
On the other hand, a too-small MSS can result in a  considerable  performance 
loss,  especially  when operating over fast LANs and networks that can handle 
larger packets. So the best value for MSS is probably 40 less than the  largest  
MTU  on your system, with the 40-byte margin allowing for the TCP and IP 
headers. For example, if you have a SLIP interface with a 1006 byte  MTU  and an 
Ethernet  interface  with  a  1500  byte MTU, set MSS to 1460 bytes. This allows 
you to receive maximum-sized Ethernet packets, assuming  the  path  to your 
system does not have any bottleneck subnets with smaller MTUs.
2.4.6.  Setting Window

A sliding window protocol like TCP cannot transfer  more  than  one  window's 
worth  of data per round trip time interval. So this TCP-level parameter controls 
the ability of the remote TCP to keep a long "pipe" full. That is, when operating  
over  a path with many hops, offering a large TCP window will help keep all those 
hops busy when you're  receiving  data.  On  the  other  hand, offering  too  large 
a window can congest the network if it cannot buffer all that data. Fortunately, 
new algorithms for dynamic controlling the  effective TCP  flow  control window 
have been developed over the past few years and are now widely deployed.  Nos 
includes them, and you can  watch  them  in  action with  the  'tcp  status  <tcb>'
or 'socket <#>' commands.  Look at the cwind (congestion window) value.
In most cases it is safe to set the TCP window to a small integer multiple of the  
MSS,  (e.g.  4times),  or  larger  if  necessary  to fully utilize a high 
bandwidth*delay product path. One thing to keep in  mind,  however,  is  that 
advertising a certain TCP window value declares that the system has that much 
buffer space available for incoming data.  Nos does not actually  pre-allocate this 
space; it keeps it in a common pool and may well overbook" it, exploiting the fact 
that many TCP connections are idle for long periods and gambling that  most  
applications will read incoming data from an active connection as soon as it 
arrives, thereby quickly freeing the buffer memory.   However,  it is possible to 
run Nos out of memory if excessive TCP window sizes are advertised and either 
the applications go to  sleep  indefinitely  (e.g.  suspended Telnet  sessions)  or  a 
lot of out-of-sequence data arrives.  It is wise to keep an eye on the amount of 
available memory and to decrease the TCP  window size (or limit the number of 
simultaneous connections) if it gets too low. 
Depending on the channel access method and link level protocol, the use of  a 
window  setting  that exceeds the MSS may cause an increase in channel 
collisions. In particular, collisions between  data  packets  and  returning  
acknowledgments  during  a  bulk file transfer may become common. Although 
this is, strictly peaking, not TCP's fault, it is possible  to  work  around  the 
problem  at  the  TCP  level  by  decreasing  the window so that the protocol 
operates in stop-and-wait mode.  This is done  by  making  the  window  value 
equal to the MSS.
2.5.  Summary
APPENDIX A Sample AUTOEXEC.NOS Page 82



In most cases, the default values provided by JNOS40 for each of  these  
parameters  will  work  correctly  and give reasonable performance. Only in 
special circumstances such as operation over a very poor link or  experimentation
with high speed modems should it be necessary to change them.

APPENDIX A Sample AUTOEXEC.NOS Page 83



APPENDIX C   Designing Attach Commands

NOS supports a number of versions of the attach command to deal with different 
hardware.  We'll discuss three of them here:  asy, used for serial port connections;
pi, used to connect to the Ottawa PI card; and packet, used to interface to 
hardware supporting the FTP, Inc., packet driver protocol.  As usual, this 
discussion covers the basics; see the JNOS/JNOS40 Commands Manual or the NOS
reference manual for more information on all the many options.

Hosts normally have a separate IP address for each interface.  If you are running 
more than one interface, you can include that interface's IP address (in 
[xx.xx.xx.xx] form) at the end of the attach command.

The asy version provides an interface to a standard PC serial port.  The syntax is:

attach asy <ioaddr> <vector> <mode> <if> <bufsize> <mtu> <speed>

In English, these parameters are:

ioaddr -- the address of the COM port being used.  COM1 is usually 0x3f8 and 
COM2 is usually 0x2f8.  COM3 and COM4 aren't standardized; using them will 
require looking at the documentation for your serial card, and probably some 
experimentation.

vector -- the IRQ used by the hardware.  COM1 is usually 4, and COM2 is usually 
3.  Again, COM3 and COM4 vary.

mode -- this specifies the nature of the interface.  ax25 is for a connection to a 
KISS TNC, slip for a hardwired connection to another host, ppp for a dial-up 
connection, and nrs is for attaching a NOS station to a NetRom node.

if -- the interface name.  The convention is to use ax0, ax1, etc., for KISS 
interfaces.

bufsize -- the buffer for incoming data, in bytes.  Usually a value of 1024 is more 
than sufficient for a 1200 baud channel.

mtu -- the maximum transmission unit size, in bytes.  See the discussion in the 
main text on this subject.

speed -- the speed of the serial (not radio) link, in baud.  The best setting for this 
will depend on the speed of your computer, but generally two to four times the 
radio speed is adequate.

Some sample attach asy commands are:

APPENDIX A Sample AUTOEXEC.NOS Page 84



# COM1, KISS TNC as ax0, MTU 256, 4800 BAUD
attach asy 0x3f8 4 ax25 ax0 1024 256 4800

# COM2, KISS TNC as ax1, MTU 256, 2400 BAUD
attach asy 0x2f8 3 ax25 ax1 1024 256 2400

# SLIP link, COM1 as sl0, MTU 256, 9600 BAUD
attach asy 0x3f8 4 slip sl0 1024 256 9600

The Ottawa PI card is a plug-in board for PCs designed for high-speed 
performance.  It has two ports, one DMA driven for high speed and the other 
interrupt driven.  The attach syntax is:

attach pi <ioaddr> <vector> <DMA chn> <mode> <name> <bufsize> 
<mtu> <speed a> <speed b>

A sample attach command (using the PI's default jumper settings) is:

attach pi 380 7 1 ax25 pi0 1750 1024 0 1200

In this example, the interface name for the DMA port is "pi0a" and the second 
port is "pi0b".  Because the port a speed is 0, the PI card expects the modem to 
provide its own clocking.  The PI attach syntax is explained in the manual 
provided with the card.

Finally, the packet interface is used to connect to ethernet cards and other 
hardware that supports the FTP, Inc. "packet driver" standard.  There's a packet 
driver for the PI card.  The syntax is:

attach packet <ioaddr> <vector> <if> <bufsize> <mtu>

In this case, ioaddr and vector need to match those used for the packet TSR that 
supports the hardware.  bufsize is the number of packets (not bytes) that may be 
outstanding.  For ethernet, the standard mtu is 1500.

APPENDIX A Sample AUTOEXEC.NOS Page 85



APPENDIX D     Making Your TNC talk in KISS Mode

Once NOS is installed and your configuration files set, you need to do one more 
thing:  get your TNC talking to your computer in KISS (Keep It Simple, Stupid) 
mode.  KISS is a special protocol that lets your computer do the work of 
processing packets; the TNC does only the very low-level packet assembly and 
disassembly functions.  Nearly all TNCs support KISS in one way or another.

Typically, you'll need to issue commands to the TNC to set the serial line baud 
rate to the same speed as you've specified in the attach command, to 8 bit data, 
and to no parity.  Then, issue the KISS command (on a TNC2, kiss on), and the 
TNCs software reset command.  After that, you won't be able to talk to your TNC 
via the terminal program, but NOS will be able to.  (And don't worry, you can 
easily return the TNC to normal mode if you want to.)  Once you've done this, 
you're set to run NOS.

The 'comm' command will send a string of text to the named interface allowing 
you to send ascii commands to your TNC.  For example, to force a Kantronics 
DataEngine or KAM into KISS mode every time you start NOS, include the 
following commands in AUTOEXEC.NOS (after you've defined the interface with 
the attach command):

comm ax0 "interface kiss"
comm ax0 "reset"

Note that surrounding the text with quote characters will preserve spaces in the 
command.
APPENDIX E        BBS Sites and Internet Conferences 

All of the files in the distribution package are available on several anonymous FTP
servers on the Internet as well as many land-line BBSes.  Places where you may 
expect to always find current releases are:

Internet:
ftp.ece.orst.edu directory  pub/ham/wg7j/jnos40
ucsd.edu directory  hamradio/packet/tcpip/wg7j

Landline:
CyberGate (316) 688-0915
N8EMR's Ham BBS (614) 895-2553
ChowdaNet       (401) 331-0334

There is one Internet conference which focuses on development and use of the 
JNOS variants of Karn's NOS.EXE.

APPENDIX A Sample AUTOEXEC.NOS Page 86



nos-bbs@hydra.carleton.ca

You may subscribe to this conference by sending an email to 

nos-bbs-request@hydra.carleton.ca

In the body of the message put one line:

  "subscribe nos-bbs(-digest) [address]"

If you add the word "-digest", you will receive the daily summary of 
messages to the conference instead of copies of all messages.  If you want the 
conference sent to an email address DIFFERENT from the one where you originate
the subscription request, specify that different address as shown.

There is also the the advanced networking topics group 

tcp-group@ucsd.edu.

You can subscribe to this group by sending an email to:

listserv@ucsd.edu

In the body of the message, enter on one line:

subscribe tcp-group(-digest) [address]

This works as described above.

To UNSUBSCRIBE, use the same format described above with the one word 
change.

APPENDIX A Sample AUTOEXEC.NOS Page 87



APPENDIX A Sample AUTOEXEC.NOS Page 88


